Skip to main content
Log in

Phase transition of Ni55−xCoxMn20Ga25 (8.5 ≤ x ≤ 11.0) alloys with different compositions and magnetic fields

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Studies on Co-doped Ni–Mn–Ga ferromagnetic shape memory alloys (FSMAs) have been quite active topics in recent years. Unlike previous reports where the amount of Co doping was generally less than 8 at%, in this work Ni55−xCoxMn20Ga25 (8.5 ≤ x ≤ 11.0) alloys were studied with high Co doping. Unusual effects of both composition and magnetic field on phase transitions were observed. With the increase in substitution of Co for Ni, the magnetic transition temperatures increase gradually but the martensitic transformation temperature decreases quite sharply. In particular, the average decrease in the martensitic transformation temperatures is up to 100 K which is nearly twice that in the case of Co content of less than 8 at%. Further, under an applied magnetic field ranging from 0.03 to 0.60 T, abnormal stabilization of a martensite phase with lower magnetization was monitored. Magnetic entropy change of 1.6 J·kg−1·K−1 was induced at the martensitic transformation of Ni46.5Co8.5Mn20Ga25 alloy by an applied field of 1 T. The magnetic contributions, including the magnetocrystalline anisotropy and the Zeeman energy, to the thermodynamics of the martensitic transformation are considered to understand the observed unusual phenomena. This work results in new insights into the understanding of Co-doped Ni–Mn-based ferromagnetic shape memory alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yu GH, Xu YL, Liu ZH, Qiu HM, Zhu ZY, Huang XP, Pan LQ. Recent progress in Heusler-type magnetic shape memory alloys. Rare Met. 2015;34(8):527.

    Article  CAS  Google Scholar 

  2. Xu N, Raulot JM, Li ZB, Zhang YD, Bai J, Peng W, Meng XY, Zhao X, Zuo L, Esling C. Composition dependent phase stability of Ni–Mn–Ga alloys studied by ab initio calculations. J Alloys Compd. 2014;614:126.

    Article  CAS  Google Scholar 

  3. Jin X, Marioni M, Bono D, Allen SM, O’Handley RC, Hsu TY. Empirical mapping of Ni–Mn–Ga properties with composition and valence electron concentration. J Appl Phys. 2002;91(10):8222.

    Article  CAS  Google Scholar 

  4. Umetsu RY, Ando H, Yamashita S, Endo K, Nishihara H, Kainuma R, Kanomata T, Ziebeck KRA. Phase diagram and magnetic moment of Ni50+xMn27−xGa23 ferromagnetic shape memory alloys. J Alloys Compd. 2013;579:521.

    Article  CAS  Google Scholar 

  5. Soto-Parra DE, Alvarado-Hernandez F, Ayala O, Ochoa-Gamboa RA, Flores-Zúñiga H, Rios-Jara D. The effect of Fe addition on the transformation temperatures, lattice parameter and magnetization saturation of Ni52.5−xMn23Ga24.5Fex ferromagnetic shape memory alloy. J Alloys Compd. 2008;464:288.

    Article  CAS  Google Scholar 

  6. Yu SY, Yan SS, Kang SS, Tang XD, Qian JF, Chen JL, Wu GH. Magnetic field-induced martensite–austenite transformation in Fe-substituted NiMnGa ribbons. Scr Mater. 2011;65(1):9.

    Article  CAS  Google Scholar 

  7. Sui JH, Zhang X, Gao L, Cai W. Microstructure, phase transformation and mechanical properties of Ni–Mn–Ga–Y magnetic shape memory alloys. J Alloys Compd. 2011;509:8692.

    Article  CAS  Google Scholar 

  8. Xin Y, Chai L. Microstructure and martensitic transformation behavior of Ni56−xMn25FexGa19 shape memory alloys. Rare Met. 2014;33(1):41.

    Article  CAS  Google Scholar 

  9. Cai W, Gao L, Liu AL, Sui JH, Gao ZY. Martensitic transformation and mechanical properties of Ni–Mn–Ga–Y ferromagnetic shape memory alloys. Scr Mater. 2007;57(7):659.

    Article  CAS  Google Scholar 

  10. Wang HF, Wang JM, Jiang CB, Xu HB. Phase transition and mechanical properties of Ni30Cu20Mn37+xGa13−x (x = 0–4.5) alloys. Rare Met. 2014;33(5):547.

    Article  CAS  Google Scholar 

  11. Wang JM, Li PP, Jiang CB. Phase stability and magnetic properties of Ni50−xCuxMn31Ga19 alloys. Intermetallics. 2013;34:14.

    Article  Google Scholar 

  12. Chen F, Tong YX, Tian B, Li L. Zheng YF. Martensitic transformation and magnetic properties of Ti-doped NiCoMnSn shape memory alloy. Rare Met. 2014;33(5):511.

    Article  Google Scholar 

  13. Morito H, Oikawa K, Fujita A, Fukamichi K, Kainuma R, Ishida K. A large magnetic-field-induced strain in Ni–Fe–Mn–Ga–Co ferromagnetic shape memory alloy. J Alloys Compd. 2013;577:S372.

    Article  CAS  Google Scholar 

  14. Diestel A, Niemann R, Schleicher B, Schwabe S, Schultz L, Fahler S. Field-temperature phase diagrams of freestanding and substrate-constrained epitaxial Ni–Mn–Ga–Co films for magnetocaloric applications. J Appl Phys. 2015;118:023908.

    Article  Google Scholar 

  15. Soto-Parra DE, Moya X, Mañosa L, Planes A, Flores-Zúñiga H, Alvarado-Hernández F, Ochoa-Gamboa RA, Matutes-Aquino JA, Rios-Jara D. Fe and Co selective substitution in Ni2MnGa: effect of magnetism on relative phase stability. Philos Mag. 2010;90(20):2771.

    Article  CAS  Google Scholar 

  16. Segui C, Cesari E. Composition and atomic order effects on the structural and magnetic transformations in ferromagnetic Ni–Co–Mn–Ga shape memory alloys. J Appl Phys. 2012;111:043914.

    Article  Google Scholar 

  17. Yu SY, Cao ZX, Ma L, Liu GD, Chen JL, Wu GH, Zhang B, Zhang XX. Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys. Appl Phys Lett. 2007;91:102507.

    Article  Google Scholar 

  18. Kanomata T, Kitsunai Y, Sano K, Furutani Y, Nishihara H, Umetsu RY, Kainuma R, Miura Y, Shirai M. Magnetic properties of quaternary Heusler alloys Ni2−xCoxMnGa. Phys Rev B. 2009;80(21):214402.

    Article  Google Scholar 

  19. Su DS, Li Y, Xin Y, Yuan BF. Aging-induced two-stage reverse martensitic transformation behavior in Co46Ni27Ga27 high-temperature shape memory alloy. Rare Met. 2011;30(5):527.

    Article  CAS  Google Scholar 

  20. Yang SY, Ma YQ, Jiang HF, Liu XJ. Microstructure and shape-memory characteristics of Ni56Mn25−xCoxGa19 (x = 4, 8) high-temperature shape-memory alloys. Intermetallics. 2011;19(2):225.

    Article  CAS  Google Scholar 

  21. Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O. Giant magnetocaloric effect driven by structural transitions. Nat Mater. 2012;11:620.

    Article  CAS  Google Scholar 

  22. Recarte V, Pérez-Landazábal JI, Kustov S, Cesari E. Entropy change linked to the magnetic field induced martensitic transformation in a Ni–Mn–In–Co shape memory alloy. J Appl Phys. 2010;107:053501.

    Article  Google Scholar 

  23. Liu J, Scheerbaum N, Hinz D, Gutfleisch O. Magnetostructural transformation in Ni–Mn–In–Co ribbons. Appl Phys Lett. 2008;92:162509.

    Article  Google Scholar 

  24. Huang L, Cong DY, Ma L, Nie ZH, Wang MG, Wang ZL, Suo HL, Ren Y, Wang YD. Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy. J Alloys Compd. 2015;647:1081.

    Article  CAS  Google Scholar 

  25. Khovaylo V, Koledov V, Shavrov V, Ohtsuka M, Miki H, Takagi T, Novosad V. Influence of cobalt on phase transitions in Ni50Mn37Sn13. Mater Sci Eng, A. 2008;481–482:322.

    Article  Google Scholar 

  26. Ma L, Zhang HW, Yu SY, Zhu ZY, Chen JL, Wu GH. Magnetic-field-induced martensitic transformation in MnNiGa: Co alloys. Appl Phys Lett. 2008;92:032509.

    Article  Google Scholar 

  27. Chernenko VA. Compositional instability of β-phase in Ni–Mn–Ga alloys. Scr Mater. 1999;40(5):523.

    Article  CAS  Google Scholar 

  28. Wang JM, Jiang CB, Techapiesancharoenkij R, Bono D, Allen SM, O’Handley RC. Anomlous magnetizations in melt spinning Ni–Mn–Ga. J Appl Phys. 2009;106:023903.

    Google Scholar 

  29. Stadler S, Khan M, Mitchell J, Ali N, Gomes AM, Dubenko I, Takeuchi AY, Guimarães AP. Magnetocaloric properties of Ni2Mn1−xCuxGa. Appl Phys Lett. 2006;88:192511.

    Article  Google Scholar 

  30. Gomes AM, Khan M, Stadler S, Ali N, Dubenko I, Takeuchi AY, Guimarães AP. Magnetocaloric properties of the Ni2Mn1-x(Cu, Co)xGa Heusler alloys. J Appl Phys. 2006;99:08Q106.

    Article  Google Scholar 

  31. Karaca HE, Karaman I, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ. On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Mater. 2007;55(13):4253.

    Article  CAS  Google Scholar 

  32. Andreev SV, Bartashevich MI, Pushkarsky VI, Maltsev VN, Pamyatnykh LA, Tarasov EN, Tarasov EN, Kudrevatykh NV, Goto T. Law of approach to saturation in highly anisotropic ferromagnets Application to Nd–Fe–B melt-spun ribbons. J Alloy Compd. 1997;260(1–2):196.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2012CB619404), the National Natural Science Foundations of China (Nos. 51221163 and 51331001), Beijing Natural Science Foundation (No. 2132126) and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Min Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, JM., Hua, H. et al. Phase transition of Ni55−xCoxMn20Ga25 (8.5 ≤ x ≤ 11.0) alloys with different compositions and magnetic fields. Rare Met. 42, 572–578 (2023). https://doi.org/10.1007/s12598-016-0828-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0828-y

Keywords

Navigation