Skip to main content
Log in

Free-standing two-dimensional Au films

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Free-standing two-dimensional (FS-2D) materials of covalent or ionic bonds can be prepared through mechanical exfoliation by virtue of their intrinsic layered crystal structures. Here, following this strategy, it was reported the fabrication of large-area FS-2D Au films with controllable lattice orientations via an electrochemical hydrogen-detaching method. It was further characterized the catalytic properties of FS-2D Au. The (111)-oriented FS-2D Au with 20 nm in thickness shows a catalytic conversion up to 43.8% for the oxidation of cyclohexane as a model reaction system, a result of more than double of generally reported values. The exceptionally high catalytic activity could be attributed to the flexible structure of the FS-2D Au catalyst, which differs from the rigid structure of general catalysts. The results give useful implications for large-scale productions of a variety of FS-2D metals with controllable orientations, by which their applications may not be confined to catalysis chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Geim AK. Graphene: status and prospects. Science. 2009;324(5934):1530.

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Moeozov SV. Two-dimensional gas of massless dirac fermions in grapheme. Nature. 2005;438(7065):197.

    Article  CAS  Google Scholar 

  3. Geim AK, Grigorieva IV. Van der waals heterostructures. Nature. 2013;499(7459):419.

    Article  CAS  Google Scholar 

  4. Duesberg GS. Heterojunctions in 2D semiconductors: a perfect match. Nat Mater. 2014;13(12):1075.

    Article  CAS  Google Scholar 

  5. Koppens FH, Mueller T, Avouris Ph, Ferrari AC, Vitiello MS, Polini M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat Nanotechnol. 2014;9(10):780.

    Article  CAS  Google Scholar 

  6. Yasaei P, Kumar B, Hantehzadeh R, Kayyalha M, Baskin A, Repnin N, Wang CH, Klie RF, Chen YP, Kral P. Chemical sensing with switchable transport channels in graphene grain boundaries. Nat Commun. 2014;5(1):4911.

    Article  CAS  Google Scholar 

  7. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666.

    Article  CAS  Google Scholar 

  8. Geim AK, Novoselov KS. The rise of grapheme. Nat Mater. 2007;6(3):183.

    Article  CAS  Google Scholar 

  9. Ahmad N, Stokes J, Fox NA. Ultra-thin metal films for enhanced solar absorption. Nano Energy. 2012;1(6):777.

    Article  CAS  Google Scholar 

  10. Fekkai Z, Mustapha N, Hennache A. Optical, morphological and electrical properties of silver and aluminium metallization contacts for solar cells. Am J Mod Phys. 2014;3(2):45.

    Article  Google Scholar 

  11. Xu XG, Zhang DL, Wu Y, Zhang X, Li XQ, Yang HL, Jiang Y. Electronic structures of Heusler alloy Co2FeAl1−xSix surface. Rare Met. 2012;31(2):107.

    Article  CAS  Google Scholar 

  12. Huang XQ, Tang SH, Mu XL, Dai Y, Chen GX, Zhou ZY, Ruan FX, Yang ZL, Zheng NF. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol. 2010;6(1):28.

    Article  Google Scholar 

  13. Iyer GRS, Wang J, Wells G, Guruvenket S, Payne S, Bradley M, Borondics F. Large-area, freestanding, single-layer graphene-gold: a hybrid plasmonic nanostructure. ACS Nano. 2014;8(6):6353.

    Article  CAS  Google Scholar 

  14. Hashmi ASK, Hutchings GJ. Gold catalysis. Angew Chem Int Edit. 2006;45(47):7896.

    Article  Google Scholar 

  15. Feng RJ, Li M, Liu JX. Preparation and catalytic activity of CO-resistant catalyst core-shell Au@Pt/C for methanol oxidation. Rare Met. 2012;31(5):451.

    Article  CAS  Google Scholar 

  16. Xu ML, Yang XK, Zhang YJ, Xia SB, Dong P, Yang GT. Enhanced methanol oxidation activity of Au@Pd nanoparticles supported on MWCNTs functionalized by MB under ultraviolet irradiation. Rare Met. 2015;34(1):12.

    Article  CAS  Google Scholar 

  17. Schuchardt U, Cardoso D, Sercheli R. Cyclohexane oxidation continues to be a challenge. Appl Catal A Gen. 2001;211(1):1.

    Article  CAS  Google Scholar 

  18. Sheldon RA, Kochi JK. Metal-Catalyzed Oxidation of Organic Compunds. New York: Academic Press; 1981. 38.

    Google Scholar 

  19. Xu LX, He CH, Zhu MQ. Silica-supported gold catalyst modified by doping with titania for cyclohexane oxidation. Catal Lett. 2007;118(3–4):248.

    Article  CAS  Google Scholar 

  20. Lu GM, Zhao R, Qian G, Qi YX, Wang XL, Suo JS. A highly efficient catalyst Au/MCM-41 for selective oxidation cyclohexane using oxygen. Catal Lett. 2004;97(3–4):115.

    Article  Google Scholar 

  21. Süss-Fink G, Gonzalez L, Shul’pin GB. Alkane oxidation with hydrogen peroxide catalyzed homogeneously by vanadium–containing polyphosphomolybdates. Appl Catal A Gen. 2001;217(1–2):111.

    Article  Google Scholar 

  22. Meyer JC, Geim AK, Katsnelson MI. The structure of suspended graphene sheets. Nature. 2007;446(7131):60.

    Article  CAS  Google Scholar 

  23. Patil NS, Jha R, Uphade BS. Epoxidation of styrene by anhydrous t-butyl hydroperoxide over gold supported on Al2O3, Ga2O3, In2O3 and Tl2O3. Appl Catal A Gen. 2004;275(1–2):87.

    Article  CAS  Google Scholar 

  24. Lee SY, Yamada M, Miyake M. Synthesis of carbon nanotubes over gold nanoparticle supported catalysts. Carbon. 2005;43(13):2654.

    Article  CAS  Google Scholar 

  25. Huang XH, Neretina S. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater. 2009;21(48):4880.

    Article  CAS  Google Scholar 

  26. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Fundamental Research Funds for the Central Universities (No. FRF-SD-12-027A), the New Century Excellent Talents in Universities (No. NCET-12-0778), Innovation on Working Methodology of Ministry of Science and Technology of China (No. 2012IM030500), the National Natural Science Foundation of China (No. 51328202) and China Scholarship Council (No. 201308110345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Li Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, SZ., Yang, M., Xiang, QY. et al. Free-standing two-dimensional Au films. Rare Met. 41, 4235–4240 (2022). https://doi.org/10.1007/s12598-016-0827-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0827-z

Keywords

Navigation