Skip to main content
Log in

Recovery of scandium from bauxite residue—red mud: a review

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Red mud is a slimy caustic residue generated from alumina production. Taking into account the relatively considerable content and availability of scandium, red mud can be viewed as an important and promising scandium resource rather than a solid waste. This paper is primarily to review the investigations of scandium recovery from red mud based on the most widely used hydrometallurgical processes including acid leaching, solvent extraction and ion exchange adsorption. It is thought that recovery of scandium from red mud should be considered as a direct objective rather than a by-product in the development of overall flowsheet. In order to achieve environmentally-friendly processes with high scandium recovery and low cost, more attention is required to be paid to optimizing the selective leaching of scandium to decrease mineral acid consumption and alleviate pollution, and developing new solvent extraction systems and novel ion exchange adsorption materials with high selectivity and recognition for scandium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kalkan E. Utilization of red mud as a stabilization material for the preparation of clay liners. Eng Geol. 2006;87(3–4):220.

    Article  Google Scholar 

  2. Yang J, Xiao B. Development of unsintered construction materials from red mud wastes produced in the sintering alumina process. Constr Build Mater. 2008;22(12):2299.

    Article  Google Scholar 

  3. Paramguru RK, Rath PC, Misra VN. Trends in red mud utilization—a review. Miner Process Extr Metall Rev Int J. 2005;26(1):1.

    Article  Google Scholar 

  4. Power G, Gräfe M, Klauber C. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy. 2011;108(1–2):33.

    Article  Google Scholar 

  5. Cao S, Ma H, Zhang Y, Chen X, Zhang Y, Zhang Y. The phase transition in Bayer red mud from China in high caustic sodium aluminate solutions. Hydrometallurgy. 2013;140:111.

    Article  Google Scholar 

  6. Liu X, Zhang N. Utilization of red mud in cement production: a review. Waste Manage Res. 2011;29(10):1053.

    Article  Google Scholar 

  7. Zhu D, Chun T, Pan J, He Z. Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt. J Iron Steel Res Int. 2012;19(8):1.

    Article  Google Scholar 

  8. Zhang R, Zheng S, Ma S, Zhang Y. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process. J Hazard Mater. 2011;189(3):827.

    Article  Google Scholar 

  9. Liu W, Yang J, Xiao B. Review on treatment and utilization of bauxite residues in China. Int J Miner Process. 2009;93(3–4):220.

    Article  Google Scholar 

  10. Sutar H, Mishra SC, Sahoo SK, Chakraverty AP, Maharana HS. Progress of red mud utilization: an overview. Am Chem Sci J. 2014;4(3):255.

    Article  Google Scholar 

  11. Singh M, Upadhayay SN, Prasad PM. Preparation of special cements from red mud. Waste Manage. 1996;16(8):665.

    Article  Google Scholar 

  12. Singh M, Upadhayay SN, Prasad PM. Preparation of iron rich cements using red mud. Cem Concr Res. 1997;27(7):1037.

    Article  Google Scholar 

  13. Zhang N, Sun H, Liu X, Zhang J. Early-age characteristics of red mud-coal gangue cementitious material. J Hazard Mater. 2009;167(1–3):927.

    Article  Google Scholar 

  14. Zhang N, Liu X, Sun H, Li L. Evaluation of blends bauxite-calcination-method red mud with other industrial wastes as a cementitious material: properties and hydration characteristics. J Hazard Mater. 2011;185(1):329.

    Article  Google Scholar 

  15. Ye N, Yang J, Ke X, Zhu J, Li Y, Xiang C, Wang H, Li L, Xiao B. Synthesis and characterization of geopolymer from Bayer red mud with thermal pretreatment. J Am Ceram Soc. 2014;97(5):1652.

    Article  Google Scholar 

  16. He J, Jie Y, Zhang J, Yu Y, Zhang G. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem Concr Compos. 2013;37:108.

    Article  Google Scholar 

  17. Zhang M, EI-Korchi T, Zhang G, Liang J, Tao M. Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud–fly ash based geopolymers. Fuel. 2014;134:315.

    Article  Google Scholar 

  18. Ye N, Yang J, Liang S, Hu Y, Hu J, Xiao B, Huang Q. Synthesis and strength optimization of one-part geopolymer based on red mud. Constr Build Mater. 2016;111:317.

    Article  Google Scholar 

  19. Liu W, Yang J, Xiao B. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. J Hazard Mater. 2009;161(1):474.

    Article  Google Scholar 

  20. Sglavo VM, Maurina S, Conci A, Salviati A, Carturan G, Cocco G. Bauxite ‘red mud’ in the ceramic industry. Part 2: production of clay-based ceramics. J Eur Ceram Soc. 2000;20(3):245.

    Article  Google Scholar 

  21. Peng F, Liang K, Shao H, Hu A. Nano-crystal glass-ceramics obtained by crystallization of vitrified red mud. Chemosphere. 2005;59(6):899.

    Article  Google Scholar 

  22. Pontikes Y, Nikolopoulos P, Angelopoulos GN. Thermal behavior of clay mixtures with bauxite residue for the production of heavy-clay ceramics. J Eur Ceram Soc. 2007;27(2–3):1645.

    Article  Google Scholar 

  23. Yang J, Zhang D, Hou J, He B, Xiao B. Preparation of glass-ceramics from red mud in the aluminium industries. Ceram Int. 2008;34(1):125.

    Article  Google Scholar 

  24. Pontikes Y, Rathossi C, Nikolopoulos P, Angelopoulos GN, Jayaseelan DD, Lee WE. Effect of firing temperature and atmosphere on sintering of ceramics made from Bayer process bauxite residue. Ceram Int. 2009;35(1):401.

    Article  Google Scholar 

  25. Alvarez J, Rosal R, Sastre H, Díez FV. Characterization and deactivation of sulfided red mud used as hydrogenation catalyst. Appl Catal A. 1995;128(2):259.

    Article  Google Scholar 

  26. Álvarez J, Ordóñez S, Rosal R, Sastre H, Díez FV. A new method for enhancing the performance of red mud as a hydrogenation catalyst. Appl Catal A. 1999;180(1–2):399.

    Article  Google Scholar 

  27. Ordóñez S, Sastre H, Díez FV. Characterisation and deactivation studies of sulfided red mud used as catalyst for the hydrodechlorination of tetrachloroethylene. Appl Catal B. 2001;29(4):263.

    Article  Google Scholar 

  28. Paredes JR, Ordóñez S, Vega A, Díez FV. Catalytic combustion of methane over red mud-based catalysts. Appl Catal B. 2004;47(1):37.

    Article  Google Scholar 

  29. Nguyen-Huy C, Kim H, Kweon H, Kim DK, Kim DW, Oh SH, Shin EW. Modification of disposable red-mud catalysts for slurry-phase hydrocracking of vacuum residue. Chem Eng Technol. 2013;36(8):1365.

    Article  Google Scholar 

  30. López E, Soto B, Arias M, Núñez A, Rubinos D, Barral MT. Adsorbent properties of red mud and its use for wastewater treatment. Water Res. 1998;32(4):1314.

    Article  Google Scholar 

  31. Altundoğan HS, Altundoğan S, Tümen F, Bildik M. Arsenic adsorption from aqueous solutions by activated red mud. Waste Manage. 2002;22(3):357.

    Article  Google Scholar 

  32. Liu C, Li Y, Luan Z, Chen Z, Zhang Z, Jia Z. Adsorption removal of phosphate from aqueous solution by active red mud. J Environ Sci. 2007;19(10):1166.

    Article  Google Scholar 

  33. Yue Q, Zhao Y, Li Q, Li W, Gao B, Han S, Qi Y, Yu H. Research on the characteristics of red mud granular adsorbents (RMGA) for phosphate removal. J Hazard Mater. 2010;176(1–3):741.

    Article  Google Scholar 

  34. Nadaroglu H, Kalkan E. Removal of cobalt (II) ions from aqueous solution by using alternative adsorbent industrial red mud waste material. Int J Phys Sci. 2012;7(9):1386.

    Google Scholar 

  35. Sahu MK, Mandal S, Dash SS, Badhai P, Patel RK. Removal of Pb(II) from aqueous solution by acid activated red mud. J Environ Chem Eng. 2013;1(4):1315.

    Article  Google Scholar 

  36. Orešcanin V, Nad K, Valkovic V, Mikulic N, Meštrovic O. Red mud and waste base: raw materials for coagulant production. J Trace Microprobe Tech. 2001;19(3):419.

    Article  Google Scholar 

  37. Orešcanin V, Tibljas D, Valkovic V. A study of coagulant production from red mud and its use for heavy metals removal. J Trace Microprobe Tech. 2002;20(2):233.

    Article  Google Scholar 

  38. Poulin E, Blais JF, Mercier G. Transformation of red mud from aluminium industry into a coagulant for wastewater treatment. Hydrometallurgy. 2008;92(1–2):16.

    Article  Google Scholar 

  39. Zhao Y, Zhang LY, Ni F, Xi B, Xia X, Peng X, Luan Z. Evaluation of a novel composite inorganic coagulant prepared by red mud for phosphate removal. Desalination. 2011;273(2–3):414.

    Article  Google Scholar 

  40. Wang X, Zhang Y, Lu R, Zhou F, An Q, Meng Z, Fei B, Lv F. Novel multiple coagulant from Bayer red mud for oily sewage treatment. Desalin Water Treat. 2015;54(3):690.

    Article  Google Scholar 

  41. Çoruh S, Ergun ON. Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste. J Hazard Mater. 2010;173(1–3):468.

    Article  Google Scholar 

  42. Rubinos D, Spagnoli G, Barral MT. Assessment of bauxite refining residue (red mud) as a liner for waste disposal facilities. Int J Min Reclam Env. 2015;29(6):433.

    Article  Google Scholar 

  43. Çengeloğlu Y, Kir E, Ersöz M. Recovery and concentration of Al(III), Fe(III), Ti(IV), and Na(I) from red mud. J Colloid Interface Sci. 2001;244(2):342.

    Article  Google Scholar 

  44. Zhong L, Zhang Y, Zhang Y. Extraction of alumina and sodium oxide from red mud by a mild hydro-chemical process. J Hazard Mater. 2009;172(2–3):1629.

    Article  Google Scholar 

  45. Cengeloglu Y, Kir E, Ersoz M, Buyukerkek T, Gezgin S. Recovery and concentration of metals from red mud by Donnan dialysis. Colloids Surf A. 2003;223(1–3):95.

    Article  Google Scholar 

  46. Deep A, Malik P, Gupta B. Extraction and separation of Ti(IV) using thiophosphinic acids and its recovery from ilmenite and red mud. Sep Sci Technol. 2007;36(4):671.

    Article  Google Scholar 

  47. Agatzini-Leonardou S, Oustadakis P, Tsakiridis PE, Markopoulos Ch. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure. J Hazard Mater. 2008;157(2–3):579.

    Article  Google Scholar 

  48. Ghosh I, Guha S, Balasubramaniam R, Kumar AVR. Leaching of metals from fresh and sintered red mud. J Hazard Mater. 2011;185(2–3):662.

    Article  Google Scholar 

  49. Ochsenkühn-Petropulu M, Lyberopulu Th, Parissakis G. Direct determination of lanthanides, yttrium and scandium in bauxites and red mud from alumina production. Anal Chim Acta. 1994;296(3):305.

    Article  Google Scholar 

  50. Ochsenkühn-Petropulu M, Lyberopulu Th, Parissakis G. Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method. Anal Chim Acta. 1995;315(1–2):231.

    Article  Google Scholar 

  51. Ochsenkühn-Petropulu M, Lyberopulu Th, Ochsenkühn KM, Parissakis G. Recovery of lanthanides and yttrium from red mud by selective leaching. Anal Chim Acta. 1996;319(1–2):249.

    Article  Google Scholar 

  52. Smirnov DI, Molchanova TV. The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production. Hydrometallurgy. 1997;45(3):249.

    Article  Google Scholar 

  53. Ochsenkühn-Petropoulou MT, Hatzilyberis KS, Mendrinos LN, Salmas CE. Pilot-plant investigation of the leaching process for the recovery of scandium from red mud. Ind Eng Chem Res. 2002;41(23):5794.

    Article  Google Scholar 

  54. Zhou H, Li D, Tian Y, Chen Y. Extraction of scandium from red mud by modified activated carbon and kinetics study. Rare Met. 2008;27(3):223.

    Article  Google Scholar 

  55. Yatsenko SP, Pyagai IN. Red mud pulp carbonization with scandium extraction during alumina production. Theor Found Chem Eng. 2010;44(4):563.

    Article  Google Scholar 

  56. Wang W, Pranolo Y, Cheng CY. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Sep Purif Technol. 2013;108:96.

    Article  Google Scholar 

  57. Roosen J, Roosendael SV, Borra CR, Gerven TV, Mullens S, Binnemans K. Recovery of scandium from leachates of Greek bauxite residue by adsorption on functionalized chitosan–silica hybrid materials. Green Chem. 2016;18:2005.

    Article  Google Scholar 

  58. Qu Y, Lian B. Bioleaching of rare earth and radioactive elements from red mud using penicillium tricolor RM-10. Bioresour Technol. 2013;136:16.

    Article  Google Scholar 

  59. Thakur RS, Sant BR. Utilization of red mud: part I—analysis and utilization as raw materials for absorbents, building materials, catalysts, filler, paints and pigments. J Sci Ind Res. 1983;42(2):87.

    Google Scholar 

  60. Thakur RS, Sant BR. Utilization of red mud: part II—recovery of alkali, iron, aluminum, titanium and other constituents and the pollution problems. J Sci Ind Res. 1983;42(8):456.

    Google Scholar 

  61. Kumar R, Srivastava JP, Premchand P. Utilization of iron values of red mud for metallurgical applications. Environ Waste Manage. 1998;831(7):108.

    Google Scholar 

  62. Sushil S, Batra VS. Catalytic applications of red mud, an aluminium industry waste: a review. Appl Catal B. 2008;81(1–2):64.

    Article  Google Scholar 

  63. Wang S, Ang HM, Tadé MO. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign process. Chemosphere. 2008;72(11):1621.

    Article  Google Scholar 

  64. Bhatnagar A, Vilar VJP, Botelho CMS, Boaventura RAR. A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environ Technol. 2011;32(3):231.

    Article  Google Scholar 

  65. Liu Y, Naidu R, Ming H. Red mud as an amendment for pollutants in solid and liquid phases. Geoderma. 2011;163(1–2):1.

    Article  Google Scholar 

  66. Klauber C, Gräfe M, Power G. Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy. 2011;108(1–2):11.

    Article  Google Scholar 

  67. Liu Y, Naidu R. Hidden values in bauxite residue (red mud): recovery of metals. Waste Manage. 2014;34(12):2662.

    Article  Google Scholar 

  68. Liu Z, Li H. Metallurgical process for valuable elements recovery from red mud—a review. Hydrometallurgy. 2015;155:29.

    Article  Google Scholar 

  69. Wang W, Pranolo Y, Cheng CY. Metallurgical process for scandium recovery from various resources: a review. Hydrometallurgy. 2011;108(1–2):100.

    Article  Google Scholar 

  70. Ahmad Z. The properties and applications of scandium-reinforced aluminum. JOM. 2003;55(2):35.

    Article  Google Scholar 

  71. Ciacchi FT, Badwal SPS, Drennan J. The system Y2O3–Sc2O3–ZrO2: phase characterisation by XRD, TEM and potical microscopy. J Eur Ceram Soc. 1991;7(3):185.

    Article  Google Scholar 

  72. Yang X, Gu Z, Wang D. Extraction and separation of scandium from rare earths by electrostatic pseudo liquid membrane. J Membr Sci. 1995;106(1–2):131.

    Article  Google Scholar 

  73. Xu S, Li S. Review of the extractive metallurgy of scandium in China (1978–1991). Hydrometallurgy. 1996;42(3):337.

    Article  Google Scholar 

  74. Gräfe M, Power G, Klauber C. Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy. 2011;108(1–2):60.

    Article  Google Scholar 

  75. Snars K, Gilkes RJ. Evaluation of bauxite residues (red muds) of different origins for environmental applications. Appl Clay Sci. 2009;46(1):13.

    Article  Google Scholar 

  76. Vachon P, Tyagi RD, Auclair JC, Wilkinson KJ. Chemical and biological leaching of aluminum from red mud. Environ Sci Technol. 1994;28(1):26.

    Article  Google Scholar 

  77. Liu W, Chen X, Li W, Yu Y, Yan K. Environmental assessment, management and utilization of red mud in China. J Clean Prod. 2014;84:606.

    Article  Google Scholar 

  78. Xue A, Chen X, Tang X. The technological study and leaching kinetics of scandium from red mud. Nonferrous Metal Extract Metall. 2010;2:51.

    Google Scholar 

  79. Xiao J. Distribution characteristics of scandium in the red mud of industrial wastes. Geol Geochem. 1996;2:82.

    Google Scholar 

  80. Pera J, Boumaza R, Ambroise J. Development of a pozzolanic pigment from red mud. Cem Concr Res. 1997;27(10):1513.

    Article  Google Scholar 

  81. Sglavo VM, Campostrini R, Maurina S, Carturan G, Monagheddu M, Budroni G, Cocco G. Bauxite ‘red mud’ in the ceramic industry. Part 1: thermal behaviour. J Eur Ceram Soc. 2000;20(3):235.

    Article  Google Scholar 

  82. Wagh AS, Pinnock WR. Occurrence of scandium and rare earth elements in Jamaican bauxite waste. Econ Geol. 1987;82(3):757.

    Article  Google Scholar 

  83. Srikanth S, Ray AK, Bandopadhyay A, Ravikumar B, Jha A. Phase constitution during sintering of red mud and red mud–fly ash mixtures. J Am Ceram Soc. 2005;88(9):2396.

    Article  Google Scholar 

  84. Zhang Y, Pan Z. Characterization of red mud thermally treated at different temperatures. J Jinan Univ Sci Tech. 2005;19(4):293.

    Google Scholar 

  85. Liu Y, Lin C, Wu Y. Characterization of red mud derived from a combined Bayer process and bauxite calcination method. J Hazard Mater. 2007;146(1–2):255.

    Article  Google Scholar 

  86. Liu X, Zhang N, Sun H, Zhang J, Li L. Structural investigation relating to the cementitious activity of bauxite residue—red mud. Cem Concr Res. 2011;41(8):847.

    Article  Google Scholar 

  87. Liao CZ, Zeng L, Shih K. Quantitative X-ray diffraction (QXRD) analysis for revealing thermal transformations of red mud. Chemosphere. 2015;131:171.

    Article  Google Scholar 

  88. Fang M, Xiao Y, Tong J. Research on gold occurrence state of some gold ore in Shandong. Min Metall. 2012;21(3):91.

    Google Scholar 

  89. Zhang J, Deng Z, Xu T. Experimental investigation on leaching metals from red mud. Light Met. 2005;2:13.

    Google Scholar 

  90. Wang K, Yu Y, Wang H, Chen J. Experimental investigation on leaching scandium from red mud by hydrochloric acid. Chin Rare Earths. 2010;31(1):95.

    Google Scholar 

  91. Xu L, Shi G, Li Y, Zhong Q, Luo Y, Yu P. Study of scandium pre-enrichment from red mud leached by hydrochloric acid. Nonferrous Met. 2015;1:54.

    Google Scholar 

  92. Tang X, Chen X, Xue A. Research on leaching kinetics of scandium from red mud. Hydrometall China. 2010;29(3):155.

    Google Scholar 

  93. Borra CR, Pontikes Y, Binnemans K, Gerven TV. Leaching of rare earths from bauxite residue (red mud). Miner Eng. 2015;76:20.

    Article  Google Scholar 

  94. Piga L, Pochetti F, Stoppa L. Recovering metals from red mud generated during alumina production. JOM. 1993;45(11):54.

    Article  Google Scholar 

  95. Rayzman VL, Filipovich IK. Integrating coal combustion and red mud sintering at an alumina refinery. JOM. 1999;51(8):16.

    Article  Google Scholar 

  96. Wang W, Cheng CY. Separation and purification of scandium by solvent extraction and related technologies: a review. J Chem Technol Biotechnol. 2011;86(10):1237.

    Article  Google Scholar 

  97. Zhang J, Deng Z, Xu T. Recovery scandium from leaching liquor of red mud. Light Met. 2006;7:16.

    Google Scholar 

  98. Jiang P, Liao C. Study on technology of extracting scandium from leaching solution of red-mud. China Nonferrous Metall. 2012;1:66.

    Google Scholar 

  99. Wang X, Li X. Scandium extraction from red mud solution by emulsion liquid membrane. Nonferrous Met. 2008;2:25.

    Google Scholar 

  100. Zhang Z, Du R, Li Y, Gao B, An F, Huang X, Zhang Y, Xu Y. Binding and recognizing properties of ionic imprinted polymer towards Sc(III). Funct Mater. 2014;451:87.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51234008 and 51574024) and the China Postdoctoral Science Foundation (No. 2016M590046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Xu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Li, HX. & Liu, XM. Recovery of scandium from bauxite residue—red mud: a review. Rare Met. 35, 887–900 (2016). https://doi.org/10.1007/s12598-016-0805-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0805-5

Keywords

Navigation