Skip to main content

Advertisement

Log in

Microstructural adjustments and mechanical properties of a cold-rolled biomedical near β−Ti alloy sheet

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this study, microstructural adjustments and mechanical properties of a cold-rolled near β-type alloy Ti−25Nb−3Zr−3Mo−2Sn (wt%) sheet were investigated. Microstructures and phase transformation products strongly depended on aging temperatures. Solution treatments within single β-phase field removed the stress-induced α″ martensites and produced a few new lath-shaped ones, but metastable β phase still dominated. This is exactly the reason why current alloy exhibits the lowest modulus (54 GPa) and best elongation to fracture (39 %), but the worst yield strength of only 340 MPa, at solution-treated state. A fairly large number of ellipsoidal ω phase nanoparticles precipitated throughout parent β phase during aging at 380 °C. These ω nanoparticles possess remarkable strengthening effect, but deteriorate ductility seriously. A novel post-aging process was proposed to remove brittle ω phase. By contrast, aging at 450 °C resulted in sufficient precipitation of fine needle-like α phase. This brought about the best combination of high yield strength (770 MPa) and moderate elastic modulus (75 GPa) and good elongation (15 %) for biomedical implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Niinomi M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti−29Nb−13Ta−4.6Zr. Biomaterials. 2003;24(16):2673.

    Article  Google Scholar 

  2. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog Mater Sci. 2009;54(3):397.

    Article  Google Scholar 

  3. Zhang F, Weidmann A, Nebe J, Beck U, Burkel E. Preparation, microstructures, mechanical properties, and cytocompatibility of TiMn alloys for biomedical applications. J Biomed Mater Res B Appl Biomater. 2010;94B(2):406.

    Google Scholar 

  4. Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 2003;19(18):1621.

    Article  Google Scholar 

  5. Delvat E, Gordin DM, Gloriant T, Duval JL, Nagel MD. Microstructure, mechanical properties and cytocompatibility of stable beta Ti−Mo−Ta sintered alloys. J Mech Behav Biomed Mater. 2008;1(4):345.

    Article  Google Scholar 

  6. Slokar L, Matkovic´ T, Matkovic´ P. Alloy design and property evaluation of new Ti−Cr−Nb alloys. Mater Des. 2012;33:26.

    Article  Google Scholar 

  7. Yamako G, Chosa E, Totoribe K, Hanada S, Masahashi N, Yamada N, Itoi E. In-vitro biomechanical evaluation of stress shielding and initial stability of a low-modulus hip stem made of β type Ti−33.6Nb−4Sn alloy. Med Eng Phys. 2014;36(12):1665.

    Article  Google Scholar 

  8. Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8(11):3888.

    Article  Google Scholar 

  9. Kuroda D, Kawasaki H, Yamamoto A, Hiromoto S, Hanawa T. Mechanical properties and microstructures of new Ti−Fe−Ta and Ti−Fe−Ta−Zr system alloys. Mater Sci Eng, C. 2005;25(3):312.

    Article  Google Scholar 

  10. Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti−24Nb−4Zr−8Sn alloy. Scr Mater. 2011;65(1):21.

    Article  Google Scholar 

  11. Li YY, Zou LM, Yang C, Li YH, Li LJ. Ultrafine-grained Ti-based composites with high strength and low modulus fabricated by spark plasma sintering. Mater Sci Eng, A. 2013;560:857.

    Article  Google Scholar 

  12. Zou LM, Li YH, Yang C, Qu SG, Li YY. Effect of Fe content on glass-forming ability and crystallization behavior of a (Ti69.7Nb23.7Zr4.9Ta1.7)100-xFex alloy synthesized by mechanical alloying. J Alloys Compd. 2013;553:40.

    Article  Google Scholar 

  13. Ma XQ, Yu ZT, Han Y, Song XP, Sun QY. In situ scanning electron microscopy observation of deformation and fracture behavior of Ti−3Zr−2Sn−3Mo−25Nb alloy. Rare Met. 2012;31(4):318.

    Article  Google Scholar 

  14. Yu ZT, Zhou L. Influence of martensitic transformation on mechanical compatibility of biomedical β type titanium alloy TLM. Mater Sci Eng, A. 2006;438–440:391.

    Google Scholar 

  15. Tian YX, Yu ZT, Ong CYA, Kent D, Wang G. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents. J Mech Behav Biomed Mater. 2014;45:132.

    Article  Google Scholar 

  16. Paladugu M, Kent D, Wang G, Yu ZT, Dargusch MS. Strengthening of cast Ti−25Nb−3Mo−3Zr−2Sn alloy through precipitation of α in two discrete crystallographic orientations. Mater Sci Eng, A. 2010;527(24–25):6601.

    Article  Google Scholar 

  17. Haghighi SE, Lu HB, Jian GY, Cao GH, Habibi D, Zhang LC. Effect of α″ martensite on the microstructure and mechanical properties of beta-type Ti−Fe−Ta alloys. Mater Des. 2015;76:47.

    Article  Google Scholar 

  18. Jiang XJ, Jing R, Ma MZ, Liu RP. The orthorhombic α″ martensite transformation during water quenching and its influence on mechanical properties of Ti−41Zr−7.3Al alloy. Intermetallics. 2014;52:32.

    Article  Google Scholar 

  19. Tane M, Okuda Y, Todaka Y, Ogi H, Nagakubo A. Elastic properties of single-crystalline ω phase in titanium. Acta Mater. 2013;61(20):7543.

    Article  Google Scholar 

  20. Tane M, Nakano T, Kuramoto S, Niinomi M, Takesue N, Nakajima H. ω Transformation in cold-worked Ti−Nb−Ta−Zr−O alloys with low body-centered cubic phase stability and its correlation with their elastic properties. Acta Mater. 2013;61(1):139.

    Article  Google Scholar 

  21. Nejezchlebová J, Janovská M, Seiner H, Sedlák P, Landa M, Šmilauerová J, Stráský J, Harcuba P, Janeček M. The effect of athermal and isothermal ω phase particles on elasticity of β-Ti single crystals. Acta Mater. 2016;110:185.

    Article  Google Scholar 

  22. Ohmori Y, Ogo T, Nakai K, Kobayashi S. Effects of ω-phase precipitation on β → α, α′′ transformations in a metastable β titanium alloy. Mater Sci Eng, A. 2012;312(1–2):182.

    Google Scholar 

  23. Hao YL, Niinomi M, Kuroda D, Fukunaga K, Zhou YL, Yang R, Suzuki A. Young’s modulus and mechanical properties of Ti−29Nb−13Ta−4.6Zr in relation to α′′ martensite. Metall Mater Trans. 2002;33(10):3137.

    Article  Google Scholar 

  24. Hou YP, Guo S, Qiao XL, Tian T, Meng QK, Cheng XN, Zhao XQ. Origin of ultralow Young’s modulus in a metastable β-type Ti−33Nb−4Sn alloy. J Mech Behav Biomed Mater. 2016;59:220.

    Article  Google Scholar 

  25. Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng, A. 1998;243(1–2):231.

    Article  Google Scholar 

  26. Yi RW, Liu HQ, Di Yi, Wan WF, Wang B, Jiang Y, Yang Q, Wang DC, Gao Q, Xu YF, Tang Q. Precipitation hardening and microstructure evolution of the Ti−7Nb−10Mo alloy during aging. Mater Sci Eng, C. 2016;63:577.

    Article  Google Scholar 

  27. Coakley J, Rahman KM, Vorontsov VA, Ohnuma M, Dye D. Effect of precipitation on mechanical properties in the β-Ti alloy Ti−24Nb−4Zr−8Sn. Mater Sci Eng, A. 2016;655:399.

    Article  Google Scholar 

  28. Jing R, Liang SX, Liu CY, Ma MZ, Liu RP. Aging effects on the microstructures and mechanical properties of the Ti−20Zr−6.5Al−4V alloy. Mater Sci Eng A. 2016;559:474.

    Article  Google Scholar 

  29. Li CL, Mi XJ, Ye WJ, Hui SX, Yu Y, Wang WQ. A study on the microstructures and tensile properties of new beta high strength titanium alloy. J Alloys Compd. 2013;550:23.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Industrial Science Technology Project of Shaanxi Province (No. 2015GY160), Western Metal Materials Innovation Fund (No. XBCL03-18) and International Cooperation and Exchanges of State Commission of Science Technology of China (No. 2014DFA30880).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Qun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, XQ., Niu, HZ., Yu, ZT. et al. Microstructural adjustments and mechanical properties of a cold-rolled biomedical near β−Ti alloy sheet. Rare Met. 37, 846–851 (2018). https://doi.org/10.1007/s12598-016-0801-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0801-9

Keywords

Navigation