Skip to main content
Log in

Microstructural dependence of magnetic and magnetostrictive properties in Fe–19 at% Ga

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A combination study of magnetic and magnetostrictive properties in directionally cast (DC) (un-annealed) and differently heat-treated Fe–19 at% Ga samples was carried out at room temperature. Slow cooling leads to an increase in the occupation of [2 0 0] easy magnetic axis. However, structural ordering of Ga atoms into a metastable D03 phase decreases the saturation magnetostriction (λs) and saturation magnetization (Ms), while increases coercivity (Hc). Water quenching suppresses the formation of stable fcc ordered phase (L12) and largely preserves disordered bcc single-phase (A2) structure down to room temperature, leading to enhanced magnetostriction and magnetization. Slow cooling promotes the ordering of metastable bcc ordered phase (D03). Magnetic force microscopy (MFM) study exhibits that the water-quenched (WQ) sample consists of a well-aligned stripe domain structure, while irregular maze-like domain structure is observed in furnace-cooled (FC) sample. The results confirm that in addition to an inhibitory effect of D03 ordering on magnetic domain wall motions, irregular magnetic domains also contribute to decrease in magnetic and magnetostrictive properties of FC sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kellog RA, Flatau AB, Clark AE, Wun-Fogle M, Lograsso TA. Temperature and stress dependencies of the magnetic and magnetostrictive properties of Fe0.81Ga0.19. Appl Phys. 2002;91(10):7821.

    Article  Google Scholar 

  2. Golovin IS, Cifre J. Structural mechanisms of anelasticity in Fe–Ga-based alloys. J Alloys Compd. 2014;584:322.

    Article  CAS  Google Scholar 

  3. Clark AE, Wun-Fogle M, Restorff JB, Lograsso TA, Cullen JR. Effect of quenching on the magnetostriction on Fe1−xGax (0.13 < x<0.21). IEEE Trans Magn. 2001;37(4):2678.

    Article  CAS  Google Scholar 

  4. Lograsso TA, Ross AR, Schlagel DL, Clark AE, Wun-Fogle M. Structural transformation in quenched Fe–Ga alloys. J Alloys Compd. 2003;350(1):95.

    Article  CAS  Google Scholar 

  5. Xing Q, Du Y, McQueeney RJ, Lograsso TA. Structural investigations of Fe–Ga alloys: phase relations and magnetostrictive behavior. Acta Mater. 2008;56(16):4536.

    Article  CAS  Google Scholar 

  6. Emdadi A. Microstructure and magnetostrictive behavior of Fe-15 at% Ga alloy with different cooling rates. Rare Met. 2015;34(4):251.

    Article  CAS  Google Scholar 

  7. Srisukhumbowornchai N, Guruswamy S. Influence of ordering on the magnetostriction of Fe–27.5 at.% Ga alloys. J Appl Phys. 2002;92(9):5371.

    Article  CAS  Google Scholar 

  8. Zhang JJ, Ma T, Van M. Magnetic force microscopy study of heat-treated Fe81Ga19 with different cooling rates. Phys B. 2010;405(15):3129.

    Article  CAS  Google Scholar 

  9. Datta S, Hung M, Raim J, Lograsso TA, Flatau AB. Effect of thermal history and Ga content on magnetomechanical properties of iron gallium alloys. Mater Sci Eng, A. 2006;435(5):221.

    Article  Google Scholar 

  10. Kawamiya N, Adachi K, Nakamura Y. Magnetic properties and Mössbauer investigations of Fe–Ga alloys. J Phys Soc Jpn. 1972;33(5):1318.

    Article  CAS  Google Scholar 

  11. Wu R. Origin of large magnetostriction in FeGa alloys. J Appl Phys. 2002;91(10):7358.

    Article  CAS  Google Scholar 

  12. Golovin IS. Anelasticity of Fe–Ga based alloys. Mater Des. 2015;88:577.

    Article  CAS  Google Scholar 

  13. Golovin IS, Palacheva VV, Bazlov AI, Cirfe J, Pons J. Structure and anelasticity of Fe3Ga and Fe3(Ga, Al) type alloys. J Alloys Compd. 2015;644:959.

    Article  CAS  Google Scholar 

  14. Golovin IS, Palacheva VV, Zadorozhnyy VY, Zhu J, Jiang H, Cirfe J, Lograsso TA. Influence of composition and heat treatment on damping and magnetostrictive properties of Fe-18%(Ga + Al) alloys. Acta Mater. 2014;78:93.

    Article  CAS  Google Scholar 

  15. Emdadi A, Cifre J. Dementeva OY, Golovin IS. Effect of heat treatment on ordering and functional properties of the Fe–19 Ga alloy. J Alloys Compd. 2015;619:58.

    Article  CAS  Google Scholar 

  16. Emdadi AA, HosseinNedjad S, BadriGhavifekr H. Effect of solidification texture on the magnetostrictive behavior of galfenol. Metall Mater Trans A. 2014;45(2):906.

    Article  CAS  Google Scholar 

  17. Liao L, Fang M, Zhu J, Li J, Wang J. Influence of Al on the magnetostriction of Fe–Ga polycrystal alloys under compressive stress. Int J Miner Metall Mater. 2014;21(1):1.

    Article  Google Scholar 

  18. Li C, Liu J, Jiang C. Effect of the growth velocity on microstructure, orientation, and magnetostriction in Fe81Ga19 alloy. Metall Mater Trans A. 2012;43(12):4514.

    Article  CAS  Google Scholar 

  19. Cullity BD. Elements of X-ray Diffraction. 2nd ed. Boston: Addison Wesley Publishing Inc; 1978. 350.

    Google Scholar 

  20. Ikeda O, Kainuma R, Ohnuma I, Fukamichi K, Ishida K. Phase equilibria and stability of ordered bcc phases in the Fe-rich portion of the Fe–Ga system. J Alloys Compd. 2002;347(1–2):198.

    Article  Google Scholar 

  21. Lograsso TA, Summers EM. Detection and quantification of D03 chemical order in Fe–Ga alloys using high resolution X-ray diffraction. Mater Sci Eng, A. 2006;416(1):240.

    Article  Google Scholar 

  22. Boisse J, Zapolsky H, Khachaturyan AG. Atomic-scale modeling of nanostructure formation in Fe–Ga alloys with giant magnetostriction: cascade ordering and decomposition. Acta Mater. 2011;59(7):2656.

    Article  CAS  Google Scholar 

  23. O’Handley RC. Modern Magnetic Materials. 1st ed. New York: Wiley; 2000. 218.

    Google Scholar 

  24. Hubert A, Schafer R. Magnetic Domains: the Analysis of Magnetic Microstructures. 3rd ed. Berlin: Springer; 2000. 5.

    Google Scholar 

  25. Golovin IS, Belamri Z, Hamana D. Internal friction, dilatometric and calorimetric study of anelasticity in Fe–13 at.% Ga and Fe–8 at.% Al–3 at.% Ga alloys. J Alloys Compd. 2011;509(32):8165.

    Article  CAS  Google Scholar 

  26. Boufenghour M, Hayoune A, Hamana D. Study of the ordered structures in Fe–Al alloys using dilatometric and calorimetric analysis. J Mater Sci. 2004;39(4):1207.

    Article  CAS  Google Scholar 

  27. Zhang JX, Chen LQ. Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Mater. 2005;53(9):2845.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliakbar Emdadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emdadi, A., Hossein Nedjad, S., Badri Ghavifekr, H. et al. Microstructural dependence of magnetic and magnetostrictive properties in Fe–19 at% Ga. Rare Met. 39, 413–420 (2020). https://doi.org/10.1007/s12598-016-0800-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0800-x

Keywords

Navigation