Skip to main content
Log in

Improving color rendering index of Mn-doped ZnO nanorods on silicon-based substrate

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Porous silicon pillar array (PSPA) samples which are ideal substantial materials with dominant electronic and luminescence properties were prepared by surface etching method. ZnO nanorods with or without Mn doping grown uniformly and aligned onto PSPA regardless of lattice matching show various photoluminescence (PL) properties. The doped Mn ions in ZnO nanorods were directly observed by X-ray photoelectron spectroscopy (XPS), and ZnO structures were detected by X-ray diffraction (XRD). As the doping concentration increases, XRD peaks of ZnO nanorods shift to low angle. The influences of doping Mn ions on luminescence properties of ZnO nanorods were investigated. Except for the ultraviolet (UV) PL band, the broad PL band is observed at visible region. The band could be divided into three separate bands (orange, green and red) by Lorentzian deconvolution. The intensity of orange PL band firstly increases then decreases, and then gets the maximum at the doping Mn-to-Zn molar ratio of 2.0:100.0 which is the most effective doping concentration. The green PL band is attributed to zinc vacancy of ZnO, the orange PL band to Mn ions recombination of itself, and the red PL band to oxygen vacancy of ZnO, respectively. As the Mn-doped ZnO nanorods could emit yellow green luminescence excited by UV radiation, and doped Mn ions could improve the color rendering index of the luminescence, the nanorods could be used as promising white-light emitters in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Canham LT. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett. 1999;57(10):1046.

    Article  Google Scholar 

  2. Sato K, Hirakuri K. Three primary color luminescence from natively and thermally oxidized nanocrystalline silicon. J Vac Sci Technol B. 2006;24(2):604.

    Article  Google Scholar 

  3. Xu HJ, Li XJ. Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence. Opt Express. 2008;5(16):2933.

    Article  Google Scholar 

  4. Zainelabdin A, Zaman S, Amin G, Nur O, Willander M. Stable white light electroluminescence from highly flexible polymer/ZnO nanorods hybrid heterojunction grown at 50 °C. Res Lett. 2010;5(9):1442.

    Google Scholar 

  5. Wu Y, Xiang J, Yang C, Lu W, Lieber CM. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature. 2004;430(6995):61.

    Article  Google Scholar 

  6. Dong JJ, Zhang XW, Yin ZG, Wang JX, Zhang SG, Si FT, Gao HL, Liu X. Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes. Appl Phys Lett. 2012;100(17):171109.

    Article  Google Scholar 

  7. Willander M, Nur O, Bano N, Sultana K. Zinc oxide nanorod-based heterostructures on solid and soft substrates for white-light-emitting diode applications. New J Phys. 2009;11(12):125020.

    Article  Google Scholar 

  8. Rakhshani AE. Optoelectronic properties of p–n and p–i–n heterojunction devices prepared by electrodeposition of n-ZnO on p-Si. J Appl Phys. 2010;108(9):094502.

    Article  Google Scholar 

  9. Zeng HB, Duan GT, Li Y, Yang SK, Xu XX, Cai WP. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Adv Funct Mater. 2010;20(4):561.

    Article  Google Scholar 

  10. Chan YF, Su W, Zhang CX, Wu ZL, Tang Y, Sun XQ, Xu HJ. Electroluminescence from ZnO-nanofilm/Si-micropillar heterostructure arrays. Opt Express. 2012;20(22):24280.

    Article  Google Scholar 

  11. He GN, Huang B, Wu ST, Li J, Wu QH. Structure morphologies and luminescence properties of ZnO nanomaterials synthesized by an acidic solution process. J Phys D Appl Phys. 2009;42(21):215401.

    Article  Google Scholar 

  12. Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed. 2002;41(7):1188.

    Article  Google Scholar 

  13. Gu XQ, Huo KF, Qian GX, Fu FF, Chu PK. Temperature dependent photoluminescence from ZnO nanowires and nanosheets on brass substrate. Appl Phys Lett. 2008;93(20):203117.

    Article  Google Scholar 

  14. Lao JY, Huang JY, Wang DZ, Ren ZF. ZnO nanobridges and nanonails. Nano Lett. 2003;3(2):235.

    Article  Google Scholar 

  15. Galoppini E, Rochford J, Chen H, Saraf G, Lu Y, Hagfeldt A, Boschloo G. Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J Phys Chem B. 2006;110(33):16159.

    Article  Google Scholar 

  16. Cheng HM, Lin KF, Hsu HC, Lin CJ, Lin LJ, Hsieh WF. Enhanced resonant Raman scattering and electron–phonon coupling from self-assembled secondary ZnO nanoparticles. J Phys Chem B. 2005;109(39):18385.

    Article  Google Scholar 

  17. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD. Room-temperature ultraviolet nanowire nanolasers. Science. 2001;292(5523):1897.

    Article  Google Scholar 

  18. Zhang Z, Li X, Wang C, Wei L, Liu L, Shao C. ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors. J Phys Chem C. 2009;113(45):19397.

    Article  Google Scholar 

  19. Liu J, Guo Z, Meng F, Jia Y, Luo T, Li M, Liu J. Novel single-crystalline hierarchical structured ZnO nanorods fabricated via a wet-chemical route: combined high gas sensing performance with enhanced optical properties. Cryst Growth Des. 2009;9(4):1716.

    Article  Google Scholar 

  20. Jr MB, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013.

    Article  Google Scholar 

  21. Liang S, Sheng H, Liu Y, Huo Z, Lu Y, Shen H. ZnO schottky ultraviolet photodetectors. J Cryst Growth. 2001;225(2):110.

    Article  Google Scholar 

  22. Wang X, Zhou J, Song J, Liu J, Xu N, Wang ZL. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Lett. 2006;6(12):2768.

    Article  Google Scholar 

  23. Blanca-Romero A, Flores-Riveros A, Rivas-Silva JF. Structure study of ZnO:Eu with the supercell method. J Nano Res. 2010;9(3):25.

    Article  Google Scholar 

  24. Zhao SH, Yang L, Wang LL, Yu BH, Chen YX, Cui YT. Synthesis and luminescence properties of ZnO:Eu3+ nanowire arrays via electrodeposited method. Funct Mater Lett. 2010;3(4):285.

    Article  Google Scholar 

  25. Sun XQ, Zhao YM, Meng QY. Synthesis and photoluminescence properties of Eu-doped ZnO nanorods arrays. Sci J Mater Sci. 2013;3(2):34.

    Google Scholar 

  26. Suyver JF, Wuister SF, Kelly JJ, Meijerink A. Luminescence of nanocrystalline ZnSe:Mn2+. Phys Chem Chem Phys. 2000;2(23):5445.

    Article  Google Scholar 

  27. Beaulac R, Archer PI, Liu XY, Lee SH, Salley GM, Dobrowolska M, Furdyna JK, Gamelin DR. Spin-polarizable dxcitonic luminescence in colloidal Mn2+-doped CdSe quantum dots. Nano Lett. 2008;8(4):1197.

    Article  Google Scholar 

  28. Yan XL, Itoh T, Dai SY, Ozaki Y, Fang Y. Cu, Mn doping effect to optical behavior and electronic structure of ZnO ceramic. J Phys Chem Solids. 2013;74(8):1127.

    Article  Google Scholar 

  29. Cai S, Zhang D, Shi L, Xu J, Zhang L, Huang L, Li H, Zhang J. Porous Ni–Mn oxide nanosheets in situ formed on nickel foam as 3D hierarchical monolith de-NO x catalysts. Nanoscale. 2014;6:7346.

    Article  Google Scholar 

  30. Kittilstved KR, Gamelin DR. Activation of ferromagnetism in Mn2+-doped ZnO using Amines. J Am Chem Soc. 2005;127(15):5292.

    Article  Google Scholar 

  31. Romeiro FC, Marinho JZ, Silva ACA, Cano NF, Dantas NO, Lima RC. Photoluminescence and magnetism in Mn2+-doped ZnO nanostructures grown rapid by the microwave hydrothermal method. J Phys Chem C. 2013;117(49):26222.

    Article  Google Scholar 

  32. El-Moneim AA, Zhang BP, Ahiyama E, Habazahi H, Kawashima A, Asami K, Hashimoto K. The corrosion behavior of sputter-deposited amorphous Mn–Ti alloys in 0.5 M NaCl solutions. Corros Sci. 1997;39(2):305.

    Article  Google Scholar 

  33. El-Moneim AA, Ismail KM, Badawy WA. Electrochemical and XPS studies of sputter-deposited ternary Mn–Ta–Cr alloys in chloride-free and chloride-containing sulphuric acid solutions. Electrochim Acta. 2002;47(15):2463.

    Article  Google Scholar 

  34. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci. 2011;257(7):2717.

    Article  Google Scholar 

  35. Willander M, Nur O, Sadaf JR, Qadir MI, Zaman S, Zainelabdin A, Bano N, Hussain I. Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials. 2010;3(4):2643.

    Article  Google Scholar 

  36. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Mokoc H. A comprehensive review of ZnO materials and devices. J Appl Phys. 2005;98(4):043101.

    Article  Google Scholar 

  37. Xu PS, Shun YM, Shi CS, Xu FQ, Pan HB. Electronic structure of ZnO and its defects. Sci Chi Ser A Math. 2001;44(9):358.

    Google Scholar 

  38. That CT, Weston L, Phillips MR. Characteristics of point defects in the green luminescence from Zn and O rich ZnO. Phys Rev B. 2012;86(11):115205.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 11104008), the Beijing Natural Science Foundation (No. 4142040) and the Fundamental Research Funds for Central Universities of China (No. 212-105560GK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Long Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, ZL., Tian, B. & Xu, HJ. Improving color rendering index of Mn-doped ZnO nanorods on silicon-based substrate. Rare Met. 36, 711–717 (2017). https://doi.org/10.1007/s12598-016-0786-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0786-4

Keywords

Navigation