Skip to main content
Log in

Corrosion behavior of Al–3.0 wt%Mg alloy in NaCl solution under magnetic field

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The influences of applied magnetic field on the corrosion behavior of Al–3.0 wt%Mg alloy in 3.5 wt% NaCl solution were investigated by electrochemical measurements, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). Stochastic analysis was applied to investigate the influences of applied magnetic field. The results indicate that the application of horizontal magnetic field of 0.4 T would increase the pitting corrosion potential (E pit), decrease the corrosion current density (i corr), prolong the pit initiation time, slow down the pit generation rate and inhibit the growth of pitting of the tested alloys in 3.5 wt% NaCl solution. The applied magnetic field would also change the mechanism of pit initiation of Al–3.0 wt%Mg alloy from A3 model (without magnetic field) to A3 + A4 model (with magnetic field). The intermediate product Al +(ad) is the paramagnetic ion that would be influenced by magnetic field sensitively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chung DDL. Electromagnetic interference shielding effectiveness of carbon materials. Carbon. 2001;39(2):279.

    Article  Google Scholar 

  2. Yang SY, Lozano K, Lomel A, Jones R. Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Compos Part A Appl Sci. 2005;36(5):691.

    Article  Google Scholar 

  3. Kim BR, Lee HK, Park SH. Electromagnetic interference shielding characteristics and shielding effectiveness of polyaniline-coated films. Thin Solid Films. 2011;519(11):3492.

    Article  Google Scholar 

  4. Cui ZH, Zhang C, Jing Y, Liu H, Jia YZ. Influence of alloying elements on corrosion resistance of aluminum alloy foils. Chin J Rare Met. 2014;38(2):176.

    Google Scholar 

  5. Lu Z, Huang C, Huang D, Yang W. Effects of a magnetic field on the anodic dissolution, passivation and transpassivation behaviour of iron in weakly alkaline solutions with or without halides. Corros Sci. 2006;48(10):3049.

    Article  Google Scholar 

  6. Lu Z, Chen JM. Magnetic field effects on anodic polarisation behaviour of iron in neutral aqueous solutions. Br Corros J. 2000;35(3):224.

    Article  Google Scholar 

  7. Sueptitz R, Koza J, Uhlemann M, Gebert A, Schulz L. Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions. Electrochim Acta. 2009;54(8):2229.

    Article  Google Scholar 

  8. Tang YC, Davenport AJ. Magnetic field effects on the corrosion of artificial pit electrodes and thin films. J Electrochem Soc. 2007;154(7):362.

    Article  Google Scholar 

  9. Lu Z, Yang W. In situ monitoring the effects of a magnetic field on the opencircuit corrosion states of iron in acidic and neutral solutions. Corros Sci. 2008;50(2):510.

    Article  Google Scholar 

  10. Su X, Xu GM, Jiang DH. Distribution uniformity of added elements in twin-roll cast Al–Zn–Mg–Cu alloy by multi-electromagnetic fields. Rare Met. 2015;34(8):546.

    Article  Google Scholar 

  11. Hu J, Dong CF, Li XG, Xiao K. Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution. J Mater Sci Technol. 2010;26(4):355.

    Article  Google Scholar 

  12. Guo B, Zhang P, Jin YP, Cheng SK. Effect of alternating magnetic field on the corrosion rate and corrosion products of copper. Rare Met. 2008;27(3):324.

    Article  Google Scholar 

  13. Shinohara K, Aogaki R. Magnetic field effect on copper corrosion in nitric acid. Electrochemistry. 1999;67(2):126.

    Google Scholar 

  14. Chiba A, Ogawa T. Effects of magnetic field direaction on the dissolution of copper, zinc, and brass in nitric acid. Corros Eng. 1988;34(4):455.

    Google Scholar 

  15. Liu L, Li Y, Wang FH. Influence of nanocrystallization on pitting corrosion behavior of an austenitic stainless steel by stochastic approach and in situ AFM analysis. Electrochim Acta. 2010;55(7):2430.

    Article  Google Scholar 

  16. Zhang T, Yang YG, Shao YW, Meng GZ, Wang FH. A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe–20Cr alloy. Electrochim Acta. 2009;54(15):3915.

    Article  Google Scholar 

  17. Shibata T, Takeyama T. Stochastic theory of pitting corrosion. Corrosion. 1997;33(7):243.

    Article  Google Scholar 

  18. Shibata T, Ameer MAM. Stochastic processes of pit generation on zirconium with an anodic oxide film. Corros Sci. 1992;33(10):738.

    Article  Google Scholar 

  19. Fujimoto S, Shibata T, Minamida M, Udaka S. A statistical evaluation of crevice corrosion on type 304 stainless steel. Corros Sci. 1994;36(9):1575.

    Article  Google Scholar 

  20. Tang YM, Zuo Y, Zhao H. The current fluctuations and accumulated pitting damage of mild steel in NaNO2–NaCl solution. Appl Surf Sci. 2005;243(1–4):82.

    Article  Google Scholar 

  21. Shao M, Fu Y, Hu RG, Lin CJ. A study on pitting corrosion of aluminum alloy 2024-T3 by scanning microreference electrode technique. Mater Sci Eng A. 2003;344(1–2):323.

    Article  Google Scholar 

  22. Arrabal R, Mingo B, Pardo A, Mohedano M, Matykina E, Rodriguez I. Pitting corrosion of rheocast A356 aluminum alloy in 3.5 wt% NaCl solution. Corros Sci. 2013;73:342.

    Article  Google Scholar 

  23. Despić AR. Electrochemical properties of aluminum alloys containing indium, gallium and thallium. J Appl Electrochem. 1976;6(6):527.

    Article  Google Scholar 

  24. Ford FP, Burstein GT, Hoar TP. Bare surface reaction rates and their relation to environment controlled cracking of aluminum alloys. J Electrochem Soc. 1980;127(6):1325.

    Article  Google Scholar 

  25. O’Brien RN, Santhanam KSV. Electrochemical hydrodynamics in magnetic fields with laser interferometry: influence of paramagnetic ions. J Appl Electrochem. 1990;20(3):427.

    Article  Google Scholar 

  26. Hinds G, Coey JMD, Lyons MEG. Influence of magnetic forces on electrochemical mass transport. Electrochem Commun. 2001;3(5):215.

    Article  Google Scholar 

  27. Waskaas M, Kharkats YI. Effect of magnetic fields on convection in solutions containing paramagnetic ions. J Electroanal Chem. 2001;502(1–2):51.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51379070) and the Fundamental Research Funds for the Central Universities (No. 2014B31714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Hua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, ZH., Zhou, ZH. et al. Corrosion behavior of Al–3.0 wt%Mg alloy in NaCl solution under magnetic field. Rare Met. 36, 627–634 (2017). https://doi.org/10.1007/s12598-016-0785-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0785-5

Keywords

Navigation