Skip to main content
Log in

Properties of WC–8Co hardmetals with plate-like WC grains prepared by plasma-assisted milling

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

WC–8Co hardmetals with different proportions of prismatic WC grains and plate-like WC grains were directly produced through sintering the W–C–8Co elemental powder mixture which was fabricated by dielectric barrier discharge plasma (DBDP)-assisted milling. The morphology of prepared WC–8Co hardmetals, geometry and the preferential orientation of plate-like WC were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. The results demonstrate that the microstructure and mechanical properties of the sintered hardmetals are related to the morphology of W grain which is dependent on DBDP-milling time. The DBDP for 1 h (DBDP-1 h)-milled W–C–Co powder contains granular W particles that tend to form prismatic WC grains, while the DBDP for 3 h (DBDP-3 h)-milled powder contains lamellar W particles that generate plate-like WC grains. By adjusting the weight ratio of DBDP-1 h powder and DBDP-3 h powder in W–C–8Co mixture, the proportion of plate-like WC in the hardmetals can be controlled, and relatively high transverse rupture strength (TRS) is obtained as the proportion of plate-like WC grain in the hardmetals is about 35 % in present experimental condition.

Graphical Abstract

The DBDP-1 h-milled W–C–8Co powder (Sample A) contains granular W particles that tend to form prismatic WC grains, while the DBDP-3 h-milled powder (Sample B) contains lamellar W particles that generate plate-like WC grains. When the weight ratio of Samples A to B powder is 1:1, Sample A1B1 has relatively high transverse rupture strength (TRS) along both Sections V and P, with proportion of plate-like WC grain of ~35 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lay S, Loubradou M, Daonnadieu P. Ultrafine microstructure in WC–Co cermet. Adv Eng Mater. 2004;10(6):811.

    Article  Google Scholar 

  2. Fang ZZ, Wang X, Ryu T, Hwang KS, Sohn HY. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide-a review. Int J Refract Met Hard Mater. 2009;27(2):288.

    Article  Google Scholar 

  3. Mukhopadhyay A, Basu B. Recent developments on WC-based bulk composites. J Mater Sci. 2011;46(3):571.

    Article  Google Scholar 

  4. Zhang FL, Wang CY, Zhu M. Nanostructured WC/Co composite powder prepared by high energy ball milling. Scripta Mater. 2003;49(11):1123.

    Article  Google Scholar 

  5. Sun L, Yang TE, Jia CC, Xiong J. Effects of graphite on the microstructure and properties of ultrafine WC–11Co composites by spark plasma sintering. Rare Met. 2011;30(1):63.

    Article  Google Scholar 

  6. Guo J, Fan P, Wang X, Fang ZZ. A novel approach for manufacturing functionally graded cemented tungsten carbide composites. Int J Powder Metall. 2011;47(3):55.

    Google Scholar 

  7. Kitamura K, Kobayashi M, Hayashi K. Microstructural development and properties of new WC–Co base hardmetal prepared from Co x W y C z  + C instead of WC. J Jpn Soc Powder Powder Metall. 2001;48(7):621.

    Article  Google Scholar 

  8. Schön A, Schubert WD, Lux B. WC platelet-containing hardmetals. In: Kneringer G, Rödhammer P, Wilder H, editors. In: Proceedings of 15th International Plansee Seminar. Reutee; 2001. 322.

  9. Nam H, Lim J, Kang S. Microstructure of (W, Ti)C–Co system containing platelet WC. Mater Sci Eng A. 2010;527(27–28):7163.

    Article  Google Scholar 

  10. Kang Y, Kang S. WC-reinforced (Ti, W)(C, N). J Eur Ceram Soc. 2010;30(3):793.

    Article  Google Scholar 

  11. Exner HE. Physical and chemical nature of cemented carbides. Int Mater Rev. 1979;4(1):149.

    Article  Google Scholar 

  12. Shaw LL, Luo H, Zhong Y. WC–18 wt%Co with simultaneous improvements in hardness and toughness derived from nanocrystalline powder. Mater Sci Eng, A. 2012;537:39.

    Article  Google Scholar 

  13. Lay S, Loubradou M. Structural analysis on planar defects formed in WC platelets in Ti-doped WC–Co. J Am Ceram Soc. 2006;89(10):3229.

    Article  Google Scholar 

  14. Sommer M, Schubert WD, Zobetz E, Warbichler P. On the formation of very large WC crystals during sintering of ultrafine WC–Co alloys. Int J Refract Met Hard Mater. 2002;20(1):41.

    Article  Google Scholar 

  15. Kinoshita S, Saito T, Kobayashi M, Hayashi K. Microstructure and mechanical properties of new WC–Co base cemented carbide having highly oriented plate-like triangular prismatic WC grains. J Jpn Soc Powder Powder Metall. 2000;47(5):526.

    Article  Google Scholar 

  16. Kim JD, Lee KW, Lee JW, Sharon M, Kang SJL. Formation of twinned WC grains during carbonization of eta phase (W3Co3C). Mater Sci Forum. 2007;534–536:1189.

    Article  Google Scholar 

  17. Zhu M, Bao XY, Yang XP, Gu NS, Wang H, Zeng MQ, Dai LY. A novel method for direct synthesis of WC–Co nanocomposite powder. Metall Mater Trans A. 2011;42(9):2930.

    Article  Google Scholar 

  18. Wang H, Zeng MQ, Liu JW, Lu ZC, Shi ZH, Ouyang LZ, Zhu M. One-step synthesis of ultrafine WC–10Co hardmetals with VC/V2O5 addition by plasma assisted milling. Int J Refract Met Hard Mater. 2015;48:97.

    Article  Google Scholar 

  19. Letchworth KL, Benner DC. Rapid and accurate calculation of the Voigt function. J Quantum Spectrosc Radiat. 2007;107(1):173.

    Article  Google Scholar 

  20. Zhu M, Dai LY, Gu NS, Cao B, Ouyang LZ. Synergism of mechanical milling and dielectric barrier discharge plasma on the fabrication of nano-powders of pure metals and tungsten carbide. J Alloys Compd. 2009;478(1–2):624.

    Article  Google Scholar 

  21. Kinoshita S, Saito T, Kobayashi M, Hayashi K. Mechanisms for formation of highly oriented plate-like triangular prismatic WC grains in WC–Co base cemented carbides prepared from W and C instead of WC. J Jpn Soc Powder Powder Metall. 2001;48(1):51.

    Article  Google Scholar 

  22. Zhao SX, Song XY, Wang MS, Wei CB, Zhang JX, Liu XM. Matching of particle sizes of WC/Co powders and spark plasma sintering densification. Acta Metall Sin. 2009;45(4):497.

    Google Scholar 

  23. Wei CB, Song XY, Zhao SX, Zhang L, Liu WB. In-situ synthesis of WC–Co composite powder and densification by sinter-HIP. Int J Refract Met Hard Mater. 2010;28(5):567.

    Article  Google Scholar 

  24. Kim JY, Kang SH. WC platelet formation via high-energy ball mill. Int J Refract Met Hard Mater. 2014;47:108.

    Article  Google Scholar 

  25. Li XQ, Chen J, Zheng DH, Qu SG, Xiao ZY. Preparation and mechanical properties of WC–10Ni3Al cemented carbides with plate-like triangular prismatic WC grains. J Alloys Compd. 2012;544:134.

    Article  Google Scholar 

  26. Liu K, Zhu LH, Tu RR. Hardening and toughening mechanisms of cemented carbides with plate-like WC grains prepared by seeding. Mater Trans. 2011;52(4):699.

    Article  Google Scholar 

  27. Shatov AV, Ponomarev SS, Firstov SA. Fracture of WC–Ni cemented carbides with different shape of WC crystals. Int J Refract Met Hard Mater. 2008;26(2):68.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Guangdong Provincial Natural Science Foundation (No. 2014A030310395) and the Fundamental Research Funds for the Central Universities (No. 2014ZB0020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Lu, ZC., Chen, ZH. et al. Properties of WC–8Co hardmetals with plate-like WC grains prepared by plasma-assisted milling. Rare Met. 35, 763–770 (2016). https://doi.org/10.1007/s12598-016-0769-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0769-5

Keywords

Navigation