Skip to main content
Log in

A semi-analytical method to compute acoustic nonlinearity parameter of Cu, Ag and Au

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this paper, a semi-analytical method was proposed to evaluate the acoustic nonlinearity parameter for single crystals of Cu, Ag and Au. The acoustic nonlinearity parameter can be derived analytically by general expressions in terms of the interatomic potentials with the distances between each pair of atoms in these transition metals. To evaluate the acoustic nonlinearity parameter, one needs to conduct one step molecular static simulation and obtain the equilibrium positions of all the atoms. Further, based on this method, numerical experiments with molecular dynamic code LAMMPS were given to compute the acoustic nonlinearity parameter of Cu, Ag and Au. To illustrate the validity of these expressions, comparison was made between calculation results and data in the literature. Reasonable agreement is observed. Because of the analytical nature of this method, it provides a fundamental understanding of the nonlinear elastic behavior of these transition metals.

Graphical Abstract

The second elastic constant and the third elastic constant can be computed with the proposed semi-analytical method. A reasonable agreement is found between the numerical calculations and the reported elastic constants for Cu, Ag and Au. The deviations might be due to the accuracy of the experimental processes and the microstructure factors like the grain structure, purity of the sample or the presence of impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jhang KY. Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: a review. Int J Precis Eng Manuf. 2009;10(1):123.

    Article  Google Scholar 

  2. Qi HY, Shi H, Li SL, Yang XG. Fatigue crack growth of titanium alloy joints by electron beam welding. Rare Met. 2014;33(5):516.

    Article  CAS  Google Scholar 

  3. Cantrell JH, Yost WT. Nonlinear ultrasonic characterization of fatigue microstructures. Int J Fatigue. 2001;23(1):487.

    Article  Google Scholar 

  4. Nagy PB. Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics. 1998;36(1):375.

    Article  Google Scholar 

  5. Stauffer JD, Woodward CB, White KR. Nonlinear ultrasonic testing with resonant and pulse velocity parameters for early damage in concrete. ACI Mater J. 2005;102(2):118.

  6. Cobb A, Capps M, Duffer C, Feiger J, Robinson K, Hollingshaus B. Nonlinear ultrasonic measurements with EMATs for detecting pre-cracking fatigue damage. Rev Prog Quant Nondestr Eval. 2012;1430(1):299.

    CAS  Google Scholar 

  7. Jhang KY. Applications of nonlinear ultrasonics to the NDE of material degradation. IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(3):540.

    Article  CAS  Google Scholar 

  8. Jhang KY, Kim KC. Evaluation of material degradation using nonlinear acoustic effect. Ultrasonics. 1999;37(1):39.

    Article  Google Scholar 

  9. Sohn H, Lim HJ, DeSimio MP, Brown K, Derriso M. Nonlinear ultrasonic wave modulation for online fatigue crack detection. J Sound Vib. 2014;333(5):1473.

    Article  Google Scholar 

  10. Hiki Y, Granato AV. Anharmonicity in noble metals; higher order elastic constants. Phys Rev. 1966;144(2):411.

    Article  CAS  Google Scholar 

  11. Riley M, Skove M. Higher-order elastic constants of copper and nickel whiskers. Phys Rev B. 1973;8(2):466.

    Article  CAS  Google Scholar 

  12. Powell B, Skove M. Measurement of higher-order elastic constants, using finite deformations. Phys Rev. 1968;174(3):977.

    Article  CAS  Google Scholar 

  13. Lubarda VA. New estimates of the third-order elastic constants for isotropic aggregates of cubic crystals. J Mech Phys Solids. 1997;45(4):471.

    Article  CAS  Google Scholar 

  14. Hamilton R, Parrott J. The third-order elastic constants of quasi-isotropic materials. J Phys C Solid State Phys. 1968;1(4):829.

    Article  Google Scholar 

  15. Barsch GR. Relation between third-order elastic constants of single crystals and polycrystals. J Appl Phys. 1968;39(8):3780.

    Article  CAS  Google Scholar 

  16. Srinivasan R. Lattice theory of third-order elastic constants of nonprimitive, nonpiezoelectric lattices. Phys Rev. 1966;144(2):620.

    Article  CAS  Google Scholar 

  17. Martin J. Many-body forces in metals and the Brugger elastic constants. J Phys C Solid State Phys. 1975;8(18):2837.

    Article  Google Scholar 

  18. Foiles S, Baskes M, Daw M. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B. 1986;33(12):7983.

    Article  CAS  Google Scholar 

  19. Doyama M, Kogure Y. Embedded atom potentials in fcc and bcc metals. Comput Mater Sci. 1999;14(1):80.

    Article  CAS  Google Scholar 

  20. Chantasiriwan S, Milstein F. Embedded-atom models of 12 cubic metals incorporating second and third order elastic-moduli data. Phys Rev B. 1998;58(10):5996.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Sci-Tech Support Plan (No. 2015BAF06B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, ZM., Zhang, Z. A semi-analytical method to compute acoustic nonlinearity parameter of Cu, Ag and Au. Rare Met. 42, 1050–1055 (2023). https://doi.org/10.1007/s12598-016-0738-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0738-z

Keywords

Navigation