Skip to main content
Log in

Multiphonon hopping conduction in carbon–nickel composite films at different deposition time

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, the electrical properties of carbon–nickel composite films deposited at different time (50–600 s) were investigated. The films were grown by radio frequency magnetron sputtering on glass substrates at room temperature. The electrical conductivity of the films was investigated in the temperature range of 15–500 K. The conductivity data in the temperature range of 400–500 K show the extended state conduction mechanism, while the multiphonon hopping (MPH) conduction is found to dominate the electrical transport in the temperature range of 150–300 K. The films deposited at 180 s have the maximum conductivity. The conductivity at T < 60 K could be described in terms of variable range hopping (VRH) conduction. The localized state density around Fermi level (N(E F)) at low temperature for the films deposited at 180 s has the minimum value of about 4.02 × 1021 cm−3·eV−1. The average hopping distance (R hop) for the films deposited at 180 s has the maximum value of about 3.51 × 10−7 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ţălu Ş, Bramowicz M, Kulesza S, Shafiekhani A, Ghaderi A, Mashayekhi F, Solaymani S. Microstructure and tribological properties of FeNPs@a-C: H films by micromorphology analysis and fractal geometry. Ind Eng Chem Res. 2015;54(33):8212.

    Article  Google Scholar 

  2. Stach S, Garczyk Ż, Ţălu Ş, Solaymani S, Ghaderi A, Moradian R, NezafatNegin B, Elahi SM, Gholamali H. Stereometric parameters of the Cu/Fe NPs thin films. J Phys Chem C. 2015;119(31):17887.

    Article  Google Scholar 

  3. Ţălu Ş, Stach S, Ghodselahi T, Ghaderi A, Solaymani S, Boochani A, Garczyk Ż. Topographic characterization of Cu–Ni NPs @ a-C: H films by AFM and multifractal analysis. J Phys Chem B. 2015;119(17):5662.

    Article  Google Scholar 

  4. Ţălu Ş, Stach S, Solaymani S, Moradian R, Ghaderi A, Hantehzadeh MR, Elahi SM, Garczyk Ż, Izadyar S. Multifractal spectra of atomic force microscope images of Cu/Fe nanoparticles based films thickness. J Electroanal Chem. 2015;78(12):31.

    Google Scholar 

  5. Ghodselahi T, Vesaghi MA, Shafiekhani A. Study of surface plasmon resonance of Cu@Cu2O core–shell nanoparticles by Mie theory. J Phys D Appl Phys. 2009;42(1):015308.

    Article  Google Scholar 

  6. Sedlackova K, Lobotka P, Vavra I, Radnoczi G. Structural, electrical and magnetic properties of carbon–nickel composite thin films. Carbon. 2005;43(10):2192.

    Article  Google Scholar 

  7. Kumar R, Khare N. Temperature dependence of conduction mechanism of ZnO and Co-doped ZnO thin films. Thin Solid Films. 2008;516(6):1302.

    Article  Google Scholar 

  8. Ghodselahi T, Vesaghi MA, Shafiekhani A, Ahmadi M, Panahandeh M, Heidari Saani M. Metal–nonmetal transition in the copper–carbon nanocomposite films. Phys B. 2010;405(18):3949.

    Article  Google Scholar 

  9. Garcia-Zarco O, Rodil SE, Camacho-Lopez MA. Deposition of amorphous carbon–silver composites. Thin Solid Films. 2009;518(5):1493.

    Article  Google Scholar 

  10. Elahi SM, Dalouji V. Study of structural, electrical and magnetic properties of RF-magnetron sputtered carbon–nickel composite films at different deposition rate. J Fusion Energy. 2015;34(3):645.

    Google Scholar 

  11. Elahi SM, Dalouji V, Mehrparvar D, Valedbagi S. Influence of deposition rate on optical properties of rf-magnetron sputtered carbon–nickel composite films deposited at different deposition times. Mol Cryst Liq Cryst. 2013;587(1):105.

    Article  Google Scholar 

  12. Dalouji V, Elahi SM. Effect of annealing temperature on the optical loss and the optical constants of RF-magnetron sputtered carbon-nickel composite films. J Korean Phys Soc. 2014;64(6):857.

    Article  Google Scholar 

  13. Mott NF, Davis EA. Electronic Processes in Non-crystalline Materials. Oxford: Clarendon Press; 1971. 1.

    Google Scholar 

  14. Singh J, Shimakawa K. Advances in Amorphous Semiconductors, vol. 11, New Fetter Lone. London: Taylor & Francis; 2003. 203.

    Google Scholar 

  15. Serin T, Yildiz A, Sahin SH, Serin N. Multiphonon hopping of carriers in CuO thin films. Phys B. 2011;406(19):3551.

    Article  Google Scholar 

  16. Emin D. Phonon-assisted jump rate in noncrystalline solids. Phys Rev Lett. 1974;32(1):303.

    Article  Google Scholar 

  17. Serin N, Yildiz A, Cama E, Uzun S, Serin T. Fluctuating in the hopping rate of CuO thin films with respect to substrate temperature. Superlattice Microstruct. 2012;52(4):759.

    Article  Google Scholar 

  18. Robertson N, Friedman L. Non-radiative transitions. Philos Mag. 1976;33(5):753.

    Article  Google Scholar 

  19. Yildiz A, Mardare D. Polaronic transport in TiO2 thin films with increasing Nb content. Philos Mag. 2011;91(34):4401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vali Dalouji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalouji, V., Elahi, S.M. & Valedbagi, S. Multiphonon hopping conduction in carbon–nickel composite films at different deposition time. Rare Met. 37, 143–147 (2018). https://doi.org/10.1007/s12598-015-0686-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0686-z

Keywords

Navigation