Skip to main content

Advertisement

Log in

Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Since lithium-ion battery with high energy density is the key component for next-generation electrical vehicles, a full understanding of its thermal behaviors at different discharge rates is quite important for the design and thermal management of lithium-ion batteries (LIBs) pack/module. In this work, a 25 Ah pouch type Li[Ni0.7Co0.15Mn0.15]O2/graphite LIBs with specific energy of 200 Wh·kg−1 were designed to investigate their thermal behaviors, including temperature distribution, heat generation rate, heat capacity and heat transfer coefficient with environment. Results show that the temperature increment of the charged pouch batteries strongly depends on the discharge rate and depth of discharge. The heat generation rate is mainly influenced by the irreversible heat effect, while the reversible heat is important at all discharge rates and contributes much to the middle evolution of the temperature during discharge, especially at low rate. Subsequently, a prediction model with lumped parameters was used to estimate the temperature evolution at different discharge rates of LIBs. The predicted results match well with the experimental results at all discharge rates. Therefore, the thermal model is suitable to predict the average temperature for the large-scale batteries under normal operating conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sun YK, Myung ST, Park BC, Park BC, Prakash J, Belharouak I, Amine K. High-energy cathode material for long-life and safe lithium batteries. Nat Mater. 2009;8(4):320.

    Article  Google Scholar 

  2. Noh HJ, Youn S, Yoon CS, Sun YK. Comparison of the structural and electrochemical properties of layered Li[Ni x Co y Mn z ]O2. J Power Sources. 2013;233(1):121.

    Article  Google Scholar 

  3. Hamut H, Dincer I, Naterer G. Performance assessment of thermal management systems for electric and hybrid electric vehicles. Int J Energy Res. 2013;37(1):1.

    Article  Google Scholar 

  4. Hong JS, Maleki H, Al Hallaj S, Ready L, Selman JR. Electrochemical-calorimetric studies of lithium-ion cells. J Electrochem Soc. 1998;145(5):1489.

    Article  Google Scholar 

  5. Spotnitz RM, Weaver J, Yeduvaka G, Doughty DH, Roth EP. Simulation of abuse tolerance of lithium-ion battery packs. J Power Sources. 2007;163(2):1080.

    Article  Google Scholar 

  6. Troxler Y, Wu B, Marinescu M, Yufit V, Patel Y, Marquis AJ, Brandon NP, Offer GJ. The effect of thermal gradients on the performance of lithium-ion batteries. J Power Sources. 2014;247(2):1018.

    Article  Google Scholar 

  7. Awarke A, Jaeger M, Oezdemir O, Pischinger S. Thermal analysis of a Li-ion battery module under realistic EV operating conditions. Int J Energy Res. 2013;37(6):617.

    Article  Google Scholar 

  8. Smith K, Kim GH, Darcy E, Pesaran A. Thermal/electrical modeling for abuse-tolerant design of lithium ion modules. Int J Energy Res. 2010;34(2):204.

    Article  Google Scholar 

  9. Al Hallaj S, Maleki H, Hong J, Selman JR. Thermal modeling and design considerations of lithium-ion batteries. J Power Sources. 1999;83(1):1.

    Article  Google Scholar 

  10. Kobayashi Y, Kihira N, Takei K, Miyashiro H, Kumai K, Terada N, Ishikawa R. Electrochemical and calorimetric approach to spinel lithium manganese oxide. J Power Sources. 1999;81(9):463.

    Article  Google Scholar 

  11. Santhanagopalan S, Zhang Q, Kumaresan K, White RE. Parameter estimation and life modeling of lithium-ion cells. J Electrochem Soc. 2008;155(4):A345.

    Article  Google Scholar 

  12. Li WC, Lu SG. Thermal behavior of C/LiFePO4 power secondary battery. Trans Nonferrous Met Soc China. 2012;22(4):1156.

    Google Scholar 

  13. Forgez C, Do DV, Friedrich G, Morcrette M, Delacourt C. Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery. J Power Sources. 2010;195(9):2961.

    Article  Google Scholar 

  14. Waag W, Käbitz S, Sauer DU. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl Energy. 2013;102(2):885.

    Article  Google Scholar 

  15. Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems. J Electrochem Soc. 1985;132(1):5.

    Article  Google Scholar 

  16. Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc. 1993;140(6):1526.

    Article  Google Scholar 

  17. Chen Y, Evans JW. Heat transfer phenomena in lithium/polymer-electrolyte batteries for electric vehicle application. J Electrochem Soc. 1993;140(7):1833.

    Article  Google Scholar 

  18. Pals CR, Newman J. Thermal modeling of the lithium/polymer battery II. Temperature profiles in a cell stack. J Electrochem Soc. 1995;142(10):3282.

    Article  Google Scholar 

  19. Song L, Evans JW. Electrochemical-thermal model of lithium polymer batteries. J Electrochem Soc. 2000;147(6):2086.

    Article  Google Scholar 

  20. Inui Y, Kobayashi Y, Watanabe Y, Watase Y, Kitamura Y. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries. Energy Convers Manag. 2007;48(7):2103.

    Article  Google Scholar 

  21. Jeon DH, Baek SM. Thermal modeling of cylindrical lithium ion battery during discharge cycle. Energy Convers Manag. 2011;52(8):2973.

    Article  Google Scholar 

  22. Abdul-Quadir Y, Laurila T, Karppinen J, Jalkanen K, Vuorilhto K, Skogström L, Paulasto-Kröckel M. Heat generation in high power prismatic Li-ion battery cell with LiMnNiCoO2 cathode material. Int J Energy Res. 2014;38(11):1424.

    Article  Google Scholar 

  23. Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc. 2011;158(3):R1.

    Article  Google Scholar 

  24. Kang J, Rizzoni G. Study of relationship between temperature and thermal energy, operating conditions as well as environmental factors in large-scale lithium-ion batteries. Int J Energy Res. 2014;38(15):1994.

    Article  Google Scholar 

  25. Srinivasan V, Wang CY. Analysis of electrochemical and thermal behavior of Li-ion cells. J Electrochem Soc. 2003;150(1):A98.

    Article  Google Scholar 

  26. Maleki H, Al Hallaj S, Selman JR, Dinwiddie RB, Wang H. Thermal properties of lithium-ion battery and components. J Electrochem Soc. 1999;146(3):947.

    Article  Google Scholar 

  27. Chen SC, Wang YY, Wan CC. Thermal analysis of spirally wound lithium batteries. J Electrochem Soc. 2006;153(4):A637.

    Article  Google Scholar 

  28. Yi J, Kim US, Shin CB, Han T, Park S. Three-dimensional thermal modeling of a lithium-ion battery considering the combined effects of the electrical and thermal contact resistances between current collecting tab and lead wire. J Electrochem Soc. 2013;160(3):A437.

    Article  Google Scholar 

  29. Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources. 2003;113(1):81.

    Article  Google Scholar 

  30. Chen Y, Evans JW. Thermal analysis of lithium-ion batteries. J Electrochem Soc. 1996;143(9):2708.

    Article  Google Scholar 

  31. Chen S, Wan C, Wang Y. Thermal analysis of lithium-ion batteries. J Power Sources. 2005;140(1):111.

    Article  Google Scholar 

  32. Bang H, Yang H, Sun YK, Prakash J. In situ studies of Li x Mn2O4 and Li x Al0.17Mn1.83O3.97S0.03 cathode by IMC. J Electrochem Soc. 2005;152(2):A421.

    Article  Google Scholar 

  33. Kim JS, Prakash J, Selman J. Thermal characteristics of Li x Mn2O4 spinel. Electrochem Solid-State Lett. 2001;4(9):A141.

    Article  Google Scholar 

  34. Williford RE, Viswanathan VV, Zhang JG. Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries. J Power Sources. 2009;189(1):101.

    Article  Google Scholar 

  35. Kim US, Shin CB, Kim CS. Effect of electrode configuration on the thermal behavior of a lithium-polymer battery. J Power Sources. 2008;180(2):909.

    Article  Google Scholar 

  36. Onda K, Kameyama H, Hanamoto T, Ito K. Experimental study on heat generation behavior of small lithium-ion secondary batteries. J Electrochem Soc. 2003;150(3):A285.

    Article  Google Scholar 

  37. Thomas KE, Newman J. Heats of mixing and of entropy in porous insertion electrodes. J Power Sources. 2003;119(6):844.

    Article  Google Scholar 

  38. Kim US, Shin CB, Kim CS. Modeling for the scale-up of a lithium-ion polymer battery. J Power Sources. 2009;189(1):841.

    Article  Google Scholar 

  39. Rao L, Newman J. Heat-generation rate and general energy balance for insertion battery systems. J Electrochem Soc. 1997;144(8):2697.

    Article  Google Scholar 

  40. Yeow K, Teng H, Thelliez M, Tan E. Comparative study on thermal behavior of lithium-ion battery systems with indirect air cooling and indirect liquid cooling. In: Proceedings of the ASME/ISCIE International Symposium on Flexible Automation. Missouri, USA: St. Louis; 2012. 585.

  41. Zhang X. Thermal analysis of a cylindrical lithium-ion battery. Electrochim Acta. 2011;56(3):1246.

    Article  Google Scholar 

  42. Al Hallaj S, Prakash J, Selman J. Characterization of commercial Li-ion batteries using electrochemical–calorimetric measurements. J. Power Sources. 2000;87(1):186.

    Article  Google Scholar 

  43. Doyle M, Newman J, Gozdz AS, Schmutz CN, Tarascon JM. Comparison of modeling predictions with experimental data from plastic lithium ion cells. J Electrochem Soc. 1996;143(6):1890.

    Article  Google Scholar 

  44. Srinivasan V, Wang C. Analysis of electrochemical and thermal behavior of Li-ion cells. J Electrochem Soc. 2003;150(1):A98.

    Article  Google Scholar 

  45. Verbrugge MW. Three-dimensional temperature and current distribution in a battery module. J AIChE. 1995;41(6):1550.

    Article  Google Scholar 

  46. Al Hallaj S, Venkatachalapathy R, Prakash J, Selman JR. Entropy changes due to structural transformation in the graphite anode and phase change of the LiCoO2 cathode. J Electrochem Soc. 2000;147(7):2432.

    Article  Google Scholar 

  47. Viswanathan VV, Choi D, Wang D, Xu W, Towne S, Williford RE, Zhang JG, Liu J, Yang ZG. Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J Power Sources. 2010;195(11):3720.

    Article  Google Scholar 

  48. Thomas KE, Newman J. Thermal modeling of porous insertion electrodes. J Electrochem Soc. 2003;150(2):A176.

    Article  Google Scholar 

  49. Ohshima T, Nakayama M, Fukuda K, Araki T, Onda K. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles. J Power Sources. 2006;157(3):17.

    Google Scholar 

  50. Kumaresan K, Sikha G, White RE. Thermal model for a Li-ion cell. J Electrochem Soc. 2008;155(2):A164.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Program from Ministry of Science and Technology of China (No. 2011AA11A254) and the National High Technology Research and Development Program of China (No. 2012AA110102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Gang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, FL., Tang, L., Li, WC. et al. Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery. Rare Met. 35, 309–319 (2016). https://doi.org/10.1007/s12598-015-0605-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0605-3

Keywords

Navigation