Rare Metals

, Volume 36, Issue 3, pp 205–208 | Cite as

An impregnation-reduction method to prepare graphite nanosheet/alumina composites and its high-frequency dielectric properties

  • Ke-Lan Yan
  • Run-Hua Fan
  • Min Chen
  • Kai Sun
  • Xu-Ai Wang
  • Qing Hou
  • Shi-Bing Pan
  • Ming-Xun Yu
Article

Abstract

The nano-graphite sheet/alumina composites were prepared in situ by a facile impregnation-reduction process. The microstructure of the composites was analyzed by X-ray diffraction (XRD), and the final phase composition after reduction is Al2O3, metal Fe and graphite crystal. Scanning electron microscopy (SEM) images show that the particle size of Fe is about 20 nm, and the lamellae thickness of the graphite is about 30 nm. Then, the dielectric properties and conductive mechanism of the composites were investigated experimentally in the frequency range of 0.01–1.00 GHz by impedance analyzer. The results show that the real part of permittivity of composites increases with Fe3+ concentration, which is due to the increase in interfacial polarization between Fe and Al2O3 and the three-dimensional network of lamellar graphite formation. Therefore, tunable microtopography and electrical parameters of nano-graphite sheet/alumina composites can be realized by changing Fe3+ concentration.

Keywords

Impregnation-reduction method Ceramic matrix composites Graphite sheet Complex permittivity Conductivity 

Notes

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 50772061 and 51172131).

References

  1. [1]
    Lim JB, Cho KH, Nahm S, Paik JH, Kim JH. Effect of BaCu (B2O5) on the sintering temperature and microwave dielectric properties of BaO–Ln2O3–TiO2 (Ln = Sm, Nd) ceramics. Mater Res Bull. 2006;41(10):1868.CrossRefGoogle Scholar
  2. [2]
    Tong JX, Zhang QL, Yang H, Zhou JL. Low-temperature firing and microwave dielectric properties of Ca[(Li1/3Nb2/3) 0.84Ti0.16] O3−δ ceramics for LTCC applications. J Am Ceram Soc. 2007;90(3):845.CrossRefGoogle Scholar
  3. [3]
    Guo M, Gong S, Dou G, Zhou DX. A new temperature stable microwave dielectric ceramics: ZnTiNb2O8 sintered at low temperatures. J Alloy Compd. 2011;509(20):5988.CrossRefGoogle Scholar
  4. [4]
    Lu JX, Moon KS, Kim BK, Wong CP. High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications. Polymer. 2007;48(6):1510.CrossRefGoogle Scholar
  5. [5]
    Fu GD, Shang ZH, Hong L. Nanoporous, ultralow-dielectric-constant fluoropolymer films from agglomerated and crosslinked hollow nanospheres of poly (pentafluorostyrene)-block-poly(divinylbenzene). Adv Mater. 2005;17(21):2622.CrossRefGoogle Scholar
  6. [6]
    Choi DH, Baker A, Lanagan M, Trolier-McKinstry S, Randall C. Structural and dielectric properties in (1−x)BaTiO3xBi(Mg1/2Ti1/2)O3 ceramics (0.1 ≤ x ≤ 0.5) and potential for high-voltage multilayer capacitors. J Am Ceram Soc. 2013;96(7):2197.CrossRefGoogle Scholar
  7. [7]
    Schmidt R, Stennett MC, Hyatt NC, Pokorny J, Prado-Gonjal J, Li M, Sinclair DC. Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12(CCTO) ceramics. J Eur Ceram Soc. 2012;32(12):3313.CrossRefGoogle Scholar
  8. [8]
    Shi ZC, Fan RH, Zhang ZD, Qian L, Gao M, Zhang M, Zheng LT, Zhang XH, Yin LW. Random composites of nickel networks supported by porous alumina toward double negative materials. Adv Mater. 2012;24(17):2349.CrossRefGoogle Scholar
  9. [9]
    Shi ZC, Fan RH, Yan KL, Sun K, Zhang M, Wang CG, Liu XF, Zhang XH. Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv Funct Mater. 2013;23(33):4123.CrossRefGoogle Scholar
  10. [10]
    Tsutaoka T, Fukuyama K, Kinoshita H, Kasagi T, Yamamoto S, Hatakeyama K. Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold. Appl Phys Lett. 2013;103(18):261906.CrossRefGoogle Scholar
  11. [11]
    Tsutaoka T, Fukuyama K, Kinoshita H, Kasagi T, Yamamoto S, Hatakeyama K. Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range. Appl Phys Lett. 2013;103(26):261906.CrossRefGoogle Scholar
  12. [12]
    Gu H, Guo J, He QL, Jiang Y, Huang YD, Haldolaarachige N, Luo ZP, Young DP, Wei SY, Guo ZH. Magnetoresistive polyaniline/multi-walled carbon nanotube nanocomposites with negative permittivity. Nanoscale. 2014;6(1):181.CrossRefGoogle Scholar
  13. [13]
    Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science. 2006;312(5781):1780.CrossRefGoogle Scholar
  14. [14]
    Shi Z, Fan RH, Zhang ZD, Yan KL, Zhang XH, Sun K, Liu XF, Wang CG. Experimental realization of simultaneous negative permittivity and permeability in Ag/Y3Fe5O12 random composites. J Mater Chem C. 2013;1(8):1633.CrossRefGoogle Scholar
  15. [15]
    Zhang ZD, Fan RH, Shi ZC, Pan SB, Yan KL, Sun KN, Zhang JD, Liu XF, Wang XL, Dou SX. Tunable negative permittivity behavior and conductor–insulator transition in dual composites prepared by selective reduction reaction. J Mater Chem C. 2013;1(1):79.CrossRefGoogle Scholar
  16. [16]
    Steinberg H, Barak G, Yacoby A, Pfeiffer LN, West KW, Halperin BI, Hur KL. Charge fractionalization in quantum wires. Nat Phys. 2008;4(2):116.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education)Shandong UniversityJinanChina
  2. 2.Shandong Non-Metallic Materials Research InstituteJinanChina

Personalised recommendations