Skip to main content
Log in

Extracting B2O3 from calcined boron mud using molten sodium hydroxide

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Extracting B2O3 from calcined boron mud (CBM) was studied. The effect of factors such as reaction temperature and NaOH-to-CBM mass ratio on B2O3 extraction efficiency was investigated. The results show that increasing reaction temperature and NaOH-to-CBM mass ratio increases B2O3 extraction efficiency. There are two stages for the B2O3 extracting process: 0–20 min is the first stage, which is rapid; 20–50 min is the second stage, which is slower than the first stage. The overall extracting process follows the shrinking core model, and the first and second stages are determined to obey the surface chemical reaction model and the diffusion through the products layer model, respectively. The activation energies of the first and second stages are calculated to be 41.74 and 15.43 kJ·mol−1, respectively. The B2O3 extracting kinetics equations of the first and second stages are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Song ZH, Ge XL, Xu XJ, Liu YH, Tao J, Wu GL. Catalysts of solid boronizing of TC4 titanium alloy. Chin J Rare Met. 2014;38(4):548.

    Google Scholar 

  2. Marija A, Nenad K, Jasna PK. Impeller geometry effect on crystallization kinetics of borax decahydrate in a batch cooling crystallizer. Chem Eng Res Des. 2012;90(6):793.

    Article  Google Scholar 

  3. Antonija K, Marija A, Nenad K. Effect of impeller type and position in a batch cooling crystallizer on the growth of borax decahydrate crystals. Chem Eng Res Des. 2013;91(2):274.

    Article  Google Scholar 

  4. Nizamettin D, Nazli B, Celal A. Dissolution of thermally dehydrated ulexite in ammonium acetate solutions. T Nonferr Metal Soc. 2013;23(6):1797.

    Article  Google Scholar 

  5. Ahmet E, Nizamettin D, Asım K. Dissolution kinetics of ulexite in acetic acid solutions. Chem Eng Res Des. 2008;86(9):1011.

    Article  Google Scholar 

  6. Doğan HT, Ahmet Y. Kinetic investigation of reaction between ulexite ore and phosphoric acid. Hydrometallurgy. 2009;96(4):294.

    Article  Google Scholar 

  7. Erbil K, Turan Ç, Sabri Ç, Soner K. Leaching kinetics of ulexite in sodium hydrogen sulphate solutions. J Ind Eng Chem. 2014;20(5):2625.

    Article  Google Scholar 

  8. Li GH, Liang BJ, Rao MJ, Zhang YB, Jiang T. An innovative process for extracting boron and simultaneous recovering metallic iron from ludwigite ore. Miner Eng. 2014;56:57.

    Article  Google Scholar 

  9. Jiang SY, Palmer MR, Peng QM, Yang JH. Chemical and stable isotopic compositions of proterozoic metamorphosed evaporites and associated tourmalines from the Houxianyu borate deposit, eastern Liaoning, China. Chem Geol. 1997;135(3–4):189.

    Article  Google Scholar 

  10. Jiang SY. Boron isotope geochemistry of hydrothermal ore deposits in China: a preliminary study. Phys Chem Earth Pt A. 2001;26(9–10):851.

    Article  Google Scholar 

  11. Yan XL, Chen B. Chemical and boron isotopic compositions of tourmaline from the paleoproterozoic Houxianyu borate deposit, NE China: implications for the origin of borate deposit. J Asian Earth Sci. 2014;94(11):252.

    Article  Google Scholar 

  12. Ma X, Ma HW, Jiang XQ. Preparation of magnesium hydroxide nanoflowers from boron mud via anti-drop precipitation method. Mater Res Bull. 2014;56(8):113.

    Article  Google Scholar 

  13. Yin YX, Zhang YH, Zhen ZC. Thermal degradation and flame retarding characteristics of polypropylene composites incorporated with boron mud. Compos Sci Technol. 2013;85:131.

    Article  Google Scholar 

  14. Yu JC, Xu AW, Zhang LZ, Song RQ, Ling WU. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. J Phys Chem B. 2004;108(1):64.

    Article  Google Scholar 

  15. Wei ZQ, Qi H, Ma PH, Bao JQ. A new route to prepare magnesium oxide whisker. Inorg Chem Commun. 2002;5(2):147.

    Article  Google Scholar 

  16. Yang LL, Wang HM, Zhu X, Li GR. Effect of boron mud and CaF2 on surface tension and density of CaO–SiO2–B2O3 ternary slag systems. J Iron Steel Res Int. 2014;21(8):745.

    Article  Google Scholar 

  17. Thangavel S, Dash K, Dhavile SM, Sahayam AC. Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP–OES). Talanta. 2015;131:505.

    Article  Google Scholar 

  18. Sui QY, Sheng XH. Chemical Reagent-Disodium Tetraborate Decahydrate. Beijing: Standards Press of China; 2008. 2.

    Google Scholar 

  19. Mu WN, Zhai YC. Desiliconization kinetics of nickeliferous laterite ores in molten sodium hydroxide system. T Nonferr Metal Soc. 2010;20(2):330.

    Article  Google Scholar 

  20. Binay KD, Swapan K, Durjoy M. Leaching of elements from coal fly ash: assessment of its potential for use in filling abandoned coal mines. Fuel. 2009;88(7):1314.

    Article  Google Scholar 

  21. Xing WD, Fan XX, Dong HG, Wu YD, Fu GQ, Liu Y. Kinetics of nickel and cobalt leaching from waste superalloys with sulfuric acid. Rare Met. 2014;38(4):674.

    Google Scholar 

  22. Abdel-Aal EA. Kinetics of sulfuric acid leaching of low-grade zinc silicate ore. Hydrometallurgy. 2000;55(3):247.

    Article  Google Scholar 

  23. Mohammad A, Zafar IZ, Tariq MA. Selective leaching kinetics and upgrading of low-grade calcareous phosphate rock in succinic acid. Hydrometallurgy. 2005;80(4):286.

    Article  Google Scholar 

  24. Zhao YC, Zhang CL, Jiang JC, Hydrometallurgy Technology in Alkaline Medium. Beijing: Metallurgy Industry Press; 2009.4.

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51204037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chun Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, ZQ., Zhai, YC. & Song, QS. Extracting B2O3 from calcined boron mud using molten sodium hydroxide. Rare Met. 34, 744–751 (2015). https://doi.org/10.1007/s12598-015-0560-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0560-z

Keywords

Navigation