Skip to main content
Log in

Collectorless flotation of marmatite with pine oil

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The interaction between pine oil and marmatite without collectors and activators was investigated by flotation, scanning electron microscope and energy-dispersive spectrometer (SEM–EDS), infrared (IR) spectroscopy, Zeta potential, and first-principle theory calculations. The flotation results show that marmatite exhibits considerable floatability with the addition of pine oil. SEM–EDS results show that carbon atomic ratios on the surface are significantly high, which suggests that the flotation of marmatite is caused by the adsorption of pine oil. Further evidence of the adsorption mechanism was given by IR, and Zeta potential examining pine oil depends on the physical adsorption on the surface independently. The first-principle theory calculations indicate that pine oil molecule adsorbs on Zn and Fe atom surfaces by ionic bond and covalent bond of adsorption energies of −1.23 and −1.51 eV, respectively. P orbital of O atom, s orbital of Zn atom, and d orbital of Fe are the major participants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu RQ, Sun W, Hu YH, Wang DZ. New collectors for the flotation of unactivated marmatite. Miner Eng. 2010;23(2):99.

    Article  Google Scholar 

  2. Gupta AK, Banerjee PK, Mishra A, Satish P. Effect of alcohol and polyglycol ether frothers on foam stability, bubble size and coal flotation. Int J Miner Process. 2007;82(3):126.

    Article  Google Scholar 

  3. Wiese JG, Harris PJ, Bradshaw DJ. The effect of increased frother dosage on froth stability at high depressant dosages. Miner Eng. 2010;23(11–13):1010.

    Article  Google Scholar 

  4. Cho YS, Laskowski JS. Effect of flotation frothers on bubble size and foam stability. Int J Miner Process. 2002;64(2–3):69.

    Article  Google Scholar 

  5. Uddin S, Li Y, Mirnezami M, Finch JA. Effect of particles on the electrical charge of gas bubbles in flotation. Miner Eng. 2012;36–38(10):160.

    Article  Google Scholar 

  6. El Mahedy AM, Mirnezami M, Finch JA. The Zeta potential of bubble in the presence of frother. Int J Miner Process. 2008;89(1–4):40.

    Google Scholar 

  7. Wiese J, Harris P. The effect of frother type and dosage on flotation performance in the presence of high depressant concentrations. Miner Eng. 2012;36–38(10):204.

    Article  Google Scholar 

  8. Barbian N, Hadler K, Ventura-Medina E, Cilliers JJ. The froth stability column: linking froth stability and flotation performance. Miner Eng. 2005;18(3):317.

    Article  Google Scholar 

  9. Hadler K, Aktas Z, Cilliers JJ. The effects of frother and collector distribution on flotation performance. Miner Eng. 2005;18(2):171.

    Article  Google Scholar 

  10. Melo F, Laskowski JS. Fundamental properties of flotation frothers and their effect on flotation. Miner Eng. 2006;19(6–8):766.

    Article  Google Scholar 

  11. Leja J, Schulman JH. Flotation theory: molecular interaction between frothers and collectors at solid-liquid-air interface. Miner Eng. 1954;16:221.

    Google Scholar 

  12. El-Shall H, Abdel-Khalek NA, Svoronos S. Collector-frother interaction in column flotation of Florida phosphate. Int J Miner Process. 2000;58(1–4):187.

    Article  Google Scholar 

  13. Sun SY, Wang DZ, Li BD. Effects of frother on the collectorless flotation of sulphideores. J Cent Southinst Min Metall. 1992;23:670.

    Google Scholar 

  14. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Reviews of modern physics. Phys Rep. 1992;64(4):1045.

    Google Scholar 

  15. Hu ZY, Yang Y, Sun B, Zhang P, Wang WC, Shao XH. Dissociations of O2 molecules on ultrathin Pb(111) films: first-principles plane wave calculations. Chin Phys B. 2012;21(1):016801.

    Article  Google Scholar 

  16. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3965.

  17. Vanderbilt D. Soft self-consistent pseudopotentials in generalized eigenvalue formalism. Phys Rev B. 1990;41(11):7892.

    Article  Google Scholar 

  18. Leppinen JO. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals. Int J Miner Process. 1990;30(3–4):245.

    Article  Google Scholar 

  19. Popov SR, Vučinić DR. The ethylxanthate adsorption on copper-activated sphalerite under flotation-related conditions in alkaline media. Int J Miner Process. 1990;30(3–4):229.

    Article  Google Scholar 

  20. Grano SR, Sollaart M, Skinner W, Prestidge CA, Ralston J. Surface modifications in the chalcopyrite-sulphite ion system. I. collectorless flotation, XPS and dissolution study. Int J Miner Process. 1997;50(1–2):1.

    Google Scholar 

  21. Fornasiero D, Ralston J. Effect of surface oxide/hydroxide products on the collectorless flotation of copper-activated sphalerite. Int J Miner Process. 2006;78(4):231.

    Article  Google Scholar 

  22. Song S, Lopez-Valdivieso A, Ding YQ. Effects of nonpolar oil on hydrophobic flocculation of hematite and rhodochrosite fines. Powder Technol. 1999;101(1):73.

    Article  Google Scholar 

  23. Laskowski JS, Ralston J. Colloid chemistry in mineral processing. Int J Miner Process. 1994;41(1–2):161.

    Google Scholar 

  24. Mazzone DN, Tardos GI, Pfeffer R. The behavior of liquid bridges between two relatively moving particles. Powder Technol. 1987;51(1):71.

    Article  Google Scholar 

  25. Chen JH. Principles of the Flotation Theory of Sulphide Minerals Bearing Lattice Defects. Changsha: Central South University Press; 2012. 56.

    Google Scholar 

  26. Hu WB. Flotation. Beijing: Metallurgical Industry Press; 1989. 85.

    Google Scholar 

  27. Dávila-Pulido GI, Uribe-Salas A. Effect of calcium, sulphate and gypsum on copper-activated and non-activated sphalerite surface properties. Miner Eng. 2014;55(1):147.

    Article  Google Scholar 

  28. Finkelstein NP. The activation of sulphide minerals for flotation: a review. Int J Miner Process. 1997;52(2–3):81.

    Article  Google Scholar 

  29. Sui C, Rashchi F, Xu Z, Kim J, Nesset JE, Finch JA. Interaction in the sphalerite–Ca–SO4–CO3 systems. Colloids Surf A. 1998;137(1–3):69.

    Article  Google Scholar 

  30. Fornasiero D, Ralston J. Effect of surface oxide/hydroxide products on the collectorless flotation of copper-activated sphalerite. Int J Miner Process. 2006;78(4):231.

    Article  Google Scholar 

  31. Ikumapayi FK. Flotation chemistry of complex sulphide ores: recycling of process water and flotation selectivity. Lulea, Sweden: Lulea University of Technology; 2010. 12.

    Google Scholar 

  32. Chandra AP, Gerson AR. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Adv Colloid Interface Sci. 2009;145(1–2):97.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51174103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, ZB., Tong, X., Valdivieso, A.L. et al. Collectorless flotation of marmatite with pine oil. Rare Met. 36, 147–154 (2017). https://doi.org/10.1007/s12598-015-0547-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0547-9

Keywords

Navigation