Skip to main content
Log in

Recent progress in Heusler-type magnetic shape memory alloys

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Magnetic shape memory alloys (MSMAs), both in condensed matter physics and in material science, are one of the most extensive research subjects. They show prompt response to the external magnetic field and give rise to large strain and have fine reversibility. The well-known example is Heusler-type MSMAs, which possess excellent multifunctional properties and have potential applications in energy transducer, actuator, sensor, microelectromechanical system, and magnetic refrigerator. In this paper, it is shown the recent progress in magnetostructural transformation, magnetic properties, shape deformation, magnetocaloric effect as well as magnetic field-induced shape memory effect in Ni–Mn–Ga, NiMnZ (Z = In, Sn, Sb), and NiCoMnZ (Z = In, Sn, Sb, Al) Heusler-type MSMAs. The remaining issues and possible challenges are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu ZH, Liu H, Zhang XX, Zhang XK, Xiao JQ, Zhu ZY, Dai XF, Liu GD, Chen JL, Wu GH. Large negative magnetoresistance in quaternary Heusler alloy Ni50Mn8Fe17Ga25 melt-spun ribbons. Appl Phys Lett. 2005;86(18):182507.

    Article  Google Scholar 

  2. Wuttig M, Liu L, Tsuchiya K, James RD. Occurrence of ferromagnetic shape memory alloys. J Appl Phys. 2000;87(9):4707.

    Article  Google Scholar 

  3. Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K. Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 2006;439(23):957.

    Article  Google Scholar 

  4. Monroe JA, Karaman I, Basaran B, Ito W, Umetsu RY, Kainuma R, Koyama K, Chumlyakov YI. Direct measurement of large reversible magnetic-field-induced strain in Ni–Co–Mn–In metamagnetic shape memory alloys. Acta Mater. 2012;60(20):6883–91.

    Article  Google Scholar 

  5. Yu SY, Cao ZX, Ma L, Liu GD, Chen JL, Wu GH, Zhang B, Zhang XX. Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys. Appl Phys Lett. 2007;91(10):102507.

    Article  Google Scholar 

  6. Kainuma R, Imano Y, Ito W, Morito H, Sutou Y, Oikawa K, Fujita A, Ishida K, Okamoto S, Kitakami O, Kanomata T. Metamagnetic shape memory effect in a Heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Appl Phys Lett. 2006;88(19):192513.

    Article  Google Scholar 

  7. Pérez-Landazábal JI, Recarte V, Sánchez-Alarcos V, Gómez-Polo C, Cesari E. Magnetic properties of the martensitic phase in Ni–Mn–In–Co metamagnetic shape memory alloys. Appl Phys Lett. 2013;102(10):101908.

    Article  Google Scholar 

  8. Du J, Zheng Q, Ren WJ, Feng WJ, Liu XG, Zhang ZD. Magnetocaloric effect and magnetic-field-induced shape recovery effect at room temperature in ferromagnetic Heusler alloy Ni–Mn–Sb. J Phys D Appl Phys. 2007;40(18):5523.

    Article  Google Scholar 

  9. Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O. Giant magnetocaloric effect driven by structural transitions. Nat Mater. 2012;11(7):620.

    Article  Google Scholar 

  10. Sozinov A, Likhachev AA, Lanska N, Ullakko K. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl Phys Lett. 2002;80(10):1746.

    Article  Google Scholar 

  11. Karaca HE, Karaman I, Basaran B, Ren Y, Chumlyakov YI, Maier HJ. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys-a new actuation mechanism with large work output. Adv Funct Mater. 2009;19(7):983.

    Article  Google Scholar 

  12. Groot RAd, Mueller FM, Engen PGV, Buschow KHJ. New class of materials: half-metallic ferromagnets. Phys Rev Lett. 1983;50(25):2024.

    Article  Google Scholar 

  13. Graf T, Felser C, Parkin SSP. Simple rules for the understanding of Heusler compounds. Prog Solid State Chem. 2011;39(1):1.

    Article  Google Scholar 

  14. Ayuela A, Enkovaara J, Ullakko K, Nieminen RM. Structural properties of magnetic Heusler alloys. J Phys Condens Matter. 1999;11:2017.

    Article  Google Scholar 

  15. Wang CW, Wang JM, Jiang CB. A linear elastic Ni50Mn25Ga9Cu16 martensitic alloy. Rare Met. 2013;32(1):29.

    Article  Google Scholar 

  16. Galanakis I, Dederichs P, Papanikolaou N. Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys Rev B. 2002;66(17):174429.

    Article  Google Scholar 

  17. Trudel S, Gaier O, Hamrle J, Hillebrands B. Magnetic anisotropy, exchange and damping in cobalt-based full-Heusler compounds: an experimental review. J Phys D Appl Phys. 2010;43(19):193001.

    Article  Google Scholar 

  18. Kreiner G, Kalache A, Hausdorf S, Alijani V, Qian JF, Shan G, Burkhardt U, Ouardi S, Felser C. New Mn2-based Heusler compounds. Z Anorg Allg Chem. 2014;640(5):738.

    Article  Google Scholar 

  19. Ritchie L, Xiao G, Ji Y, Chen TY, Chien CL, Wu G. Magnetic, structural, and transport properties of the Heusler alloys Co2MnSi and NiMnSb. Phys Rev B. 2003;68(10):104430.

    Article  Google Scholar 

  20. Liu G, Dai X, Liu H, Chen J, Li Y, Xiao G, Wu G. Mn2CoZ (Z = Al, Ga, In, Si, Ge, Sn, Sb) compounds: structural, electronic, and magnetic properties. Phys Rev B. 2008;77(1):014424.

    Article  Google Scholar 

  21. Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett. 1996;69(13):1966.

    Article  Google Scholar 

  22. Passamani EC, Xavier F, Favre-Nicolin E, Larica C, Takeuchi AY, Castro IL, Proveti JR. Magnetic properties of NiMn-based Heusler alloys influenced by Fe atoms replacing Mn. J Appl Phys. 2009;105(3):033919.

    Article  Google Scholar 

  23. Manosa L, Gonzalez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit JL, Aksoy S, Acet M. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat Mater. 2010;9(6):478.

    Article  Google Scholar 

  24. Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K. Magnetic and martensitic transformations of NiMnX (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl Phys Lett. 2004;85(19):4358.

    Article  Google Scholar 

  25. Ma SC, Xuan HC, Zhang CL, Wang LY, Cao QQ, Wang DH, Du YW. Investigation of the intermediate phase and magnetocaloric properties in high-pressure annealing Ni–Mn–Co–Sn alloy. Appl Phys Lett. 2010;97(5):052506.

    Article  Google Scholar 

  26. Zarnetta R, Takahashi R, Young ML, Savan A, Furuya Y, Thienhaus S, Maaß B, Rahim M, Frenzel J, Brunken H, Chu YS, Srivastava V, James RD, Takeuchi I, Eggeler G, Ludwig A. Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv Funct Mater. 2010;20(12):1917.

    Article  Google Scholar 

  27. Liu ZH, Zhang M, Cui YT, Zhou YQ, Wang WH, Wu GH, Zhang XX, Xiao G. Martensitic transformation and shape memory effect in ferromagnetic Heusler alloy Ni2FeGa. Appl Phys Lett. 2003;82(3):424.

    Article  Google Scholar 

  28. Liu Z, Hu H, Liu G, Cui Y, Zhang M, Chen J, Wu G, Xiao G. Electronic structure and ferromagnetism in the martensitic-transformation material Ni2FeGa. Phys Rev B. 2004;69(13):134415.

    Article  Google Scholar 

  29. Liu ZH, Liu H, Zhang XX, Zhang M, Dai XF, Hu HN, Chen JL, Wu GH. Martensitic transformation and magnetic properties of Heusler alloy Ni–Fe–Ga ribbon. Phys Lett A. 2004;329(3):214.

    Article  Google Scholar 

  30. Morito H, Oikawa K, Fujita A, Fukamichi K, Kainuma R, Ishida K. Enhancement of magnetic-field-induced strain in Ni–Fe–Ga–Co Heusler alloy. Scripta Mater. 2005;53(11):1237.

    Article  Google Scholar 

  31. Barandiarán J, Chernenko V, Lázpita P, Gutiérrez J, Feuchtwanger J. Effect of martensitic transformation and magnetic field on transport properties of Ni–Mn–Ga and Ni–Fe–Ga Heusler alloys. Phys Rev B. 2009;80(10):104404.

    Article  Google Scholar 

  32. Liu E, Du Y, Chen J, Wang W, Zhang H, Wu G. Magnetostructural transformation and magnetoresponsive properties of MnNiGe1−x Sn x alloys. IEEE Trans Magn. 2011;47(10):4041.

    Article  Google Scholar 

  33. Fang QL, Zhang JM, Zhao XM, Xu KW, Ji V. Magnetic properties and possible martensitic transformation in Mn2NiSi and Ni2MnSi Heusler alloys. J Magn Magn Mater. 2014;362:42.

    Article  Google Scholar 

  34. Liu Z, Ma X, Meng F, Wu G. Magnetic and anomalous transport properties in Fe2MnAl. J Alloys Compd. 2011;509(7):3219.

    Article  Google Scholar 

  35. Omori T, Watanabe K, Umetsu RY, Kainuma R, Ishida K. Martensitic transformation and magnetic field-induced strain in Fe–Mn–Ga shape memory alloy. Appl Phys Lett. 2009;95(8):082508.

    Article  Google Scholar 

  36. Sato M, Okazaki T, Furuya Y, Wuttig M. Magnetostrictive and shape memory properties of Heusler type Co2NiGa alloys. Mater Trans. 2003;44(3):372.

    Article  Google Scholar 

  37. Dogan E, Karaman I, Chumlyakov YI, Luo ZP. Microstructure and martensitic transformation characteristics of CoNiGa high temperature shape memory alloys. Acta Mater. 2011;59(3):1168.

    Article  Google Scholar 

  38. Dogan E, Karaman I, Singh N, Chivukula A, Thawabi HS, Arroyave R. The effect of electronic and magnetic valences on the martensitic transformation of CoNiGa shape memory alloys. Acta Mater. 2012;60(8):3545.

    Article  Google Scholar 

  39. Wang HF, Wang JM, Jiang CB, Xu HB. Phase transition and mechanical properties of Ni30Cu20Mn37+x Ga13–x (x = 0–4.5) alloys. Rare Met. 2014;33(5):547.

    Article  Google Scholar 

  40. Li Z, Jing C, Zhang HL, Qiao YF, Cao SX, Zhang JC, Sun L. A considerable metamagnetic shape memory effect without any prestrain in Ni46Cu4Mn38Sn12 Heusler alloy. J Appl Phys. 2009;106(8):083908.

    Article  Google Scholar 

  41. Brown PJ, Crangle J, Kanomata T, Matsumoto M. The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa. J Phys Condens Mat. 2002;14:10159.

    Article  Google Scholar 

  42. Buchelnikov VD, Sokolovskiy VV. Magnetocaloric effect in Ni–Mn–X (X = Ga, In, Sn, Sb) Heusler alloys. Phys Met Matellogr. 2011;112(7):633.

    Article  Google Scholar 

  43. Khan M, Dubenko I, Stadler S, Ali N. Magnetic and structural phase transitions in Heusler type alloys Ni2MnGa1−x In x . J Phys Condens Matter. 2004;16(29):5259.

    Article  Google Scholar 

  44. Murray SJ, Marioni M, Allen SM, O’Handley RC, Lograsso TA. 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga. Appl Phys Lett. 2000;77(6):886.

    Article  Google Scholar 

  45. Cherechukin AA, Takagi T, Matsumoto M, Buchel’nikov VD. Magnetocaloric effect in Ni2+x Mn1−x Ga Heusler alloys. Phys Lett A. 2004;326:146.

    Article  Google Scholar 

  46. Peruman KV, Chokkalingam R, Mahendran M. Annealing effect on phase transformation in nano structured Ni–Mn–Ga ferromagnetic shape memory alloy. Phase Transit. 2010;83(7):509.

    Article  Google Scholar 

  47. Wang WH, Hu FX, Chen JL, Li YX, Wang Z, Wu GH. Magnetic properties and structural phase transformations of NiMnGa alloys. IEEE Trans Magn. 2001;37(4):2715.

    Article  Google Scholar 

  48. Wu GH, Yu CH, Meng LQ, Chen JL, Yang FM, Qi SR, Zhan WS, Wang Z, Zheng YF, Zhao LC. Giant magnetic-field-induced strains in Heusler alloy NiMnGa with modified composition. Appl Phys Lett. 1999;75(19):2990.

    Article  Google Scholar 

  49. Ma Y, Awaji S, Watanabe K, Matsumoto M, Kobayashi N. X-ray diffraction study of the structural phase transition of Ni2MnGa alloys in high magnetic fields. Solid State Commun. 2000;113:671.

    Article  Google Scholar 

  50. Wang WH, Chen JL, Gao SX, Wu GH, Wang Z, Zheng YF. Effect of low dc magnetic field on the premartensitic phase transition temperature of ferromagnetic Ni2MnGa single crystals. Conders Matter. 2001;13:2607.

    Article  Google Scholar 

  51. Liu ZH, Zhang M, Wang WQ, Wang WH, Chen JL, Wu GH, Meng FB, Liu HY, Liu BD, Qu JP, Li YX. Magnetic properties and martensitic transformation in quaternary Heusler alloy of NiMnFeGa. J Appl Phys. 2002;92(9):5006.

    Article  Google Scholar 

  52. Wu GH, Wang WH, Chen JL, Ao L, Liu ZH, Zhan WS, Liang T, Xu HB. Magnetic properties and shape memory of Fe-doped Ni52Mn24Ga24 single crystals. Appl Phys Lett. 2002;80(4):634.

    Article  Google Scholar 

  53. Karaca H, Karaman I, Basaran B, Chumlyakov Y, Maier H. Magnetic field and stress induced martensite reorientation in NiMnGa ferromagnetic shape memory alloy single crystals. Acta Mater. 2006;54(1):233.

    Article  Google Scholar 

  54. Karaman I, Karaca HE, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ. Stress-assisted reversible magnetic field-induced phase transformation in Ni2MnGa magnetic shape memory alloys. Scripta Mater. 2006;55(4):403.

    Article  Google Scholar 

  55. Ingale B, Gopalan R, Raja MM, Chandrasekaran V, Ram S. Magnetostructural transformation, microstructure, and magnetocaloric effect in Ni–Mn–Ga Heusler alloys. J Appl Phys. 2007;102(1):013906.

    Article  Google Scholar 

  56. Karaca HE, Karaman I, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ. On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Mater. 2007;55(13):4253.

    Article  Google Scholar 

  57. Karaman I, Basaran B, Karaca HE, Karsilayan AI, Chumlyakov YI. Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy. Appl Phys Lett. 2007;90(17):172505.

    Article  Google Scholar 

  58. Kanomata T, Kitsunai Y, Sano K, Umetsu RY, Kainuma R, Miura Y, Shirai M. Magnetic properties of quaternary Heusler alloys Ni2−x Co x MnGa. Phys Rev B. 2009;80(21):214402.

    Article  Google Scholar 

  59. Kikuchi D, Kanomata T, Yamaguchi Y, Nishihara H, Koyama K, Watanabe K. Magnetic properties of ferromagnetic shape memory alloys Ni2Mn1−xFexGa. J Alloys Compd. 2004;383:184.

    Article  Google Scholar 

  60. Fabbrici S, Kamarad J, Arnold Z, Casoli F, Paoluzi A, Bolzoni F, Cabassi R, Solzi M, Porcari G, Pernechele C. From direct to inverse giant magnetocaloric effect in Co-doped NiMnGa multifunctional alloys. Acta Mater. 2011;59(1):412.

    Article  Google Scholar 

  61. Albertini F, Fabbrici S, Paoluzi A, Kamarad J, Arnold Z, Righi L, Solzi M, Porcari G, Pernechele C, Serrate D, Algarabel P. Reverse magnetostructural transitions by Co and In doping NiMnGa alloys: structural, magnetic, and magnetoelastic properties. Mater Sci Forum. 2011;684:151.

    Article  Google Scholar 

  62. Li PP, Wang JM, Jiang CB. Martensitic transformation in Cu-doped NiMnGa magnetic shape memory alloys. Chin Phys B. 2011;20(2):028104.

    Article  Google Scholar 

  63. Zhang L, Wang J, Hua H, Jiang C, Xu H. Tailoring the magnetostructural transition and magnetocaloric properties around room temperature: in-doped Ni–Mn–Ga alloys. Appl Phys Lett. 2014;105(11):112402.

    Article  Google Scholar 

  64. Barton LS, Lazott RT, Marsten ER. Magnetic properties of full Heusler alloys Ni2MnGa1−x Z x with Z = Sn or Zn. J Appl Phys. 2014;115(17):17A908.

    Article  Google Scholar 

  65. Dong GF, Cai W, Gao ZY. Microstructure and martensitic transformation of Ni–Mn–Ga–Ti ferromagnetic shape memory alloys. J Alloys Compd. 2008;465:173.

    Article  Google Scholar 

  66. Krenke T, Acet M, Wassermann E, Moya X, Mañosa L, Planes A. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys. Phys Rev B. 2005;72(1):014412.

    Article  Google Scholar 

  67. Krenke T, Acet M, Wassermann E, Moya X, Mañosa L, Planes A. Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys. Phys Rev B. 2006;73(17):174413.

    Article  Google Scholar 

  68. Sharma V, Chattopadhyay M, Roy S. Kinetic arrest of the first order austenite to martensite phase transition in Ni50Mn34In16: dc magnetization studies. Phys Rev B. 2007;76(14):140401.

    Article  Google Scholar 

  69. Takenaga T, Hayashi K, Kajitani T. Structural and magnetic transition temperatures of full Heusler Ni–Mn–Sn alloys determined by Van der Pauw Method. J Chem Eng Jpn. 2007;40(13):1328.

    Article  Google Scholar 

  70. Barandiaran JM, Chernenko VA, Cesari E, Salas D, Lazpita P, Gutierrez J, Orue I. Magnetic influence on the martensitic transformation entropy in Ni–Mn–In metamagnetic alloy. Appl Phys Lett. 2013;102(7):071904.

    Article  Google Scholar 

  71. Sokolov A, Zhang L, Dubenko I, Samanta T, Stadler S, Ali N. Evidence of martensitic phase transitions in magnetic Ni–Mn–In thin films. Appl Phys Lett. 2013;102(7):072407.

    Article  Google Scholar 

  72. Aksoy S. Synthesis and characterization of NiMnIn nanoparticles. J Magn Magn Mater. 2015;373:236.

    Article  Google Scholar 

  73. Sharma VK, Chattopadhyay MK, Kumar R, Ganguli T, Tiwari P, Roy SB. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. J Phys Condens Mat. 2007;19(49):496207.

    Article  Google Scholar 

  74. Aksoy S, Acet M, Deen P, Mañosa L, Planes A. Magnetic correlations in martensitic Ni–Mn-based Heusler shape-memory alloys: neutron polarization analysis. Phys Rev B. 2009;79(21):212401.

    Article  Google Scholar 

  75. Khan M, Dubenko I, Stadler S, Ali N. Magnetostructural phase transitions in Ni50Mn25+x Sb25−x Heusler alloys. J Phys Condens Mat. 2008;20(23):235204.

    Article  Google Scholar 

  76. Planes A, Mañosa L, Acet M. Recent progress and future perspectives in magnetic and metamagnetic shape-memory heusler alloys. Mater Sci Forum. 2013;738–739:391.

    Article  Google Scholar 

  77. Yu SY, Liu ZH, Liu GD, Chen JL, Cao ZX, Wu GH, Zhang B, Zhang XX. Large magnetoresistance in single-crystalline Ni50Mn50−x In x alloys (x = 14–16) upon martensitic transformation. Appl Phys Lett. 2006;89(16):162503.

    Article  Google Scholar 

  78. Krenke T, Duman E, Acet M, Wassermann E, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B. Magnetic superelasticity and inverse magnetocaloric effect in Ni–Mn–In. Phys Rev B. 2007;75(10):104414.

    Article  Google Scholar 

  79. Nayak AK, Suresh KG, Nigam AK. Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys. J Phys D Appl Phys. 2009;42(3):035009.

    Article  Google Scholar 

  80. Ito W, Imano Y, Kainuma R, Sutou Y, Oikawa K, Ishida K. Martensitic and magnetic transformation behaviors in Heusler-type NiMnIn and NiCoMnIn metamagnetic shape memory alloys. Metall Mater Trans A. 2007;38(4):759.

    Article  Google Scholar 

  81. Karaca HE, Karaman I, Brewer A, Basaran B, Chumlyakov YI, Maier HJ. Shape memory and pseudoelasticity response of NiMnCoIn magnetic shape memory alloy single crystals. Scr Mater. 2008;58(10):815.

    Article  Google Scholar 

  82. Lu B, Xiao F, Yan A, Liu J. Elastocaloric effect in a textured polycrystalline Ni–Mn–In–Co metamagnetic shape memory alloy. Appl Phys Lett. 2014;105(16):161905.

    Article  Google Scholar 

  83. Xu X, Kihara T, Tokunaga M, Matsuo A, Ito W, Umetsu RY, Kindo K, Kainuma R. Magnetic field hysteresis under various sweeping rates for Ni–Co–Mn–In metamagnetic shape memory alloys. Appl Phys Lett. 2013;103(12):122406.

    Article  Google Scholar 

  84. Emre B, Yüce S, Stern-Taulats E, Planes A, Fabbrici S, Albertini F, Mañosa L. Large reversible entropy change at the inverse magnetocaloric effect in Ni–Co–Mn–Ga–In magnetic shape memory alloys. J Appl Phys. 2013;113(21):213905.

    Article  Google Scholar 

  85. Kihara T, Xu X, Ito W, Kainuma R, Tokunaga M. Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn. Phys Rev B. 2014;90(21):214409.

    Article  Google Scholar 

  86. Sánchez-Alarcos V, Recarte V, Pérez-Landazábal J, Cesari E, Rodríguez-Velamazán J. Long-range atomic order and entropy change at the martensitic transformation in a Ni–Mn–In–Co metamagnetic shape memory alloy. Entropy. 2014;16(5):2756.

    Article  Google Scholar 

  87. Chen F, Tong YX, Tian B, Li L, Zheng YF, Liu Y. Magnetic-field-induced reverse transformation in a NiCoMnSn high temperature ferromagnetic shape memory alloy. J Magn Magn Mater. 2013;347:72.

    Article  Google Scholar 

  88. Chen X, Naik VB, Mahendiran R, Ramanujan RV. Optimization of Ni–Co–Mn–Sn Heusler alloy composition for near room temperature magnetic cooling. J Alloys Compd. 2015;618:187.

    Article  Google Scholar 

  89. Emre B, Bruno NM. Yuce Emre S, Karaman I. Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys. Appl Phys Lett. 2014;105(23):231910.

    Article  Google Scholar 

  90. Chen F, Tong YX, Tian B, Li L, Zheng YF. Martensitic transformation and magnetic properties of Ti-doped NiCoMnSn shape memory alloy. Rare Met. 2014;33(5):511.

    Article  Google Scholar 

  91. Nayak AK, Suresh KG, Nigam AK, Coelho AA, Gama S. Pressure induced magnetic and magnetocaloric properties in NiCoMnSb Heusler alloy. J Appl Phys. 2009;106(5):053901.

    Article  Google Scholar 

  92. Nayak AK, Suresh KG, Nigam AK. Irreversibility of field-induced magnetostructural transition in NiCoMnSb shape memory alloy revealed by magnetization, transport and heat capacity studies. Appl Phys Lett. 2010;96(11):112503.

    Article  Google Scholar 

  93. Nayak AK, Suresh KG, Nigam AK. Anomalous effects of repeated martensitic transitions on the transport, magnetic and thermal properties in Ni–Co–Mn–Sb Heusler alloy. Acta Mater. 2011;59(8):3304.

    Article  Google Scholar 

  94. Sahoo R, Raj Kumar DM, Arvindha Babu D, Suresh K, Nigam G, Manivel AK, Raja M. Effect of annealing on the magnetic, magnetocaloric and magnetoresistance properties of Ni–Co–Mn–Sb melt spun ribbons. J Magn Magn Mater. 2013;347:95.

    Article  Google Scholar 

  95. Sahoo R, Nayak AK, Suresh KG, Nigam AK. Effect of Si and Ga substitutions on the magnetocaloric properties of NiCoMnSb quaternary Heusler alloys. J Appl Phys. 2011;109(7):07A921.

    Article  Google Scholar 

  96. Xuan HC, Shen LJ, Tang T, Cao QQ, Wang DH, Du YW. Magnetic-field-induced reverse martensitic transformation and large magnetoresistance in Ni50−x Co x Mn32Al18 Heusler alloys. Appl Phys Lett. 2012;100(17):172410.

    Article  Google Scholar 

  97. Rios S, Bufford D, Karaman I, Wang H, Zhang X. Magnetic field induced phase transformation in polycrystalline NiCoMnAl thin films. Appl Phys Lett. 2013;103(13):132404.

    Article  Google Scholar 

  98. Xu X, Katakura I, Kihara T, Tokunaga M, Ito W, Umetsu RY, Kainuma R. Optical microscopic study on NiCoMnAl metamagnetic shape memory alloy by in situ observation under a pulsed high magnetic field. Mater Trans. 2013;54(3):357.

    Article  Google Scholar 

  99. Xu X, Ito W, Tokunaga M, Kihara T, Oka K, Umetsu R, Kanomata T, Kainuma R. The thermal transformation arrest phenomenon in NiCoMnAl Heusler alloys. Metals. 2013;3(3):298.

    Article  Google Scholar 

  100. Singh R, Kumar Srivastava S, Nigam AK, Khovaylo VV, Varga LK, Chatterjee R. Use of Arrott plots to identify Néel temperature (T N) in metamagnetic Ni48Co6Mn26Al20 polycrystalline ribbons. J Appl Phys. 2013;114(24):243911.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51371105, 51071023, and 51101047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qing Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, GH., Xu, YL., Liu, ZH. et al. Recent progress in Heusler-type magnetic shape memory alloys. Rare Met. 34, 527–539 (2015). https://doi.org/10.1007/s12598-015-0534-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0534-1

Keywords

Navigation