Skip to main content
Log in

First principles application for mechanical properties of Ti-doped W particles enhanced U matrix composite

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The stability, bonding, work of adhesion and electronic structure of the U/W interface with and without Ti were investigated by first principles to explore the mechanical properties of W particles enhanced U–Ti alloy matrix composite as a construction material. The calculated results indicate that the preferable orientation of the U/W interfacial structure is (001)U/(110)W crystallographic plane, Ti atoms originating from U slab are prone to diffuse into W slab through the interface, and additional Ti in U matrix is the stronger adhesion to W, with an ideal work of adhesion of 6.93 J·m−2 for U–Ti/W interface, relative to the value of 6.72 J·m−2 for clean U/W interface. The stronger adhesion performance is due to the increase in valence electron hybridization for U–Ti/W compared with U/W interface, as evidenced by the characteristic of the local density of states for the interfacial atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim KH, Lee DB, Kim CK, Hofman GE, Paik KW. Characterization of U-2 wt% Mo and U-10 wt% Mo alloy powders prepared by centrifugal atomization. J Nucl Mater. 1997;245(2–3):179.

    Article  Google Scholar 

  2. Liu YJ, Yu D, Du Y, Sheng G, Long ZH, Wang J, Zhang LJ. Atomic mobilities, diffusivities and their kinetic implications for U–X (X = Ti, Nb and Mo) bcc alloys. CALPHAD. 2012;37:49.

    Article  Google Scholar 

  3. Udy MC, Boulger FW. Uranium–titanium alloy system. Trans AIME. 1954;200:207.

    Google Scholar 

  4. Schramm CH, Gordon P, Kaufmann AR. The alloy systems uranium–tungsten, uranium–tantalum, and tungsten–tantalum. Trans AIME. 1950;188:195.

    Google Scholar 

  5. Ackermann RJ, Rauh EG. Measurements of solubilities and derived thermodynamic properties of tungsten and tantalum in liquid thorium and uranium. High Temp Sci. 1972;4(6):496.

    Google Scholar 

  6. Saroja A, Bhatt YJ, Garg SP. Determination of thermodynamic properties of liquid Th–Mo, U–Mo, Th–Ta, U–Ta, Th–W, and UW alloys from their diagrams. J Less Common Met. 1985;114(2):291.

    Article  Google Scholar 

  7. Chandrasekharaiah MS, Dharwadkar SR, Das D. High-temperature phase diagrams of Re–U, Ta–U, and W–U. Z Metallkd. 1986;77(8):509.

    Google Scholar 

  8. Berche A, Dupin N, Guéneau C, Rado C, Sundman B, Dumas JC. Calphad thermodynamic description of some binary systems involving U. J Nucl Mater. 2011;411(1–3):131.

    Article  Google Scholar 

  9. Ilo S, Just Ch, Badisch E, Wosik J, Danninger H. Effects of interface formation kinetics on the microstructural properties of wear-resistant metal–matrix composites. Mater Sci Eng A. 2010;527(23):6378.

    Article  Google Scholar 

  10. Kennedy AR, Wyatt SM. Characterizing particle–matrix interface-al bonding in particulate Al–TiC MMCs produced by different methods. Compos Part A. 2001;32(3-4):555.

    Article  Google Scholar 

  11. Hohenberg PC, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136(3B):B864.

    Article  Google Scholar 

  12. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140(4A):A1133.

    Article  Google Scholar 

  13. Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169.

    Article  Google Scholar 

  14. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.

    Article  Google Scholar 

  15. Blochl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953.

    Article  Google Scholar 

  16. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59(3):1758.

    Article  Google Scholar 

  17. Qi JB, Ren YG, Wu GX, Zhang JY, Kuochih C. Effects of Ti on electronic structure and mechanical property of uranium: a first-principles study. In: TMS 2012 Supplemental Proceeding: Materials Properties, Characterization, and Modeling. TMS Annual Meeting, Orlando, 2012;2: 699

  18. Söderlind P, Eriksson O, Johansson B, Wills JM. Electronic properties of f-electron metals using the generalized gradient approximation. Phys Rev B. 1994;50(11):7291.

    Article  Google Scholar 

  19. Söderlind P. First-principles elastic and structural properties of uranium metal. Phys Rev B. 2002;66(8):085113.

    Article  Google Scholar 

  20. Crocombette JP, Jollet F, Nga TL, Petit T. Plane-wave pseudopotential study of point defects in uranium dioxide. Phys Rev B. 2001;64(10):104107.

    Article  Google Scholar 

  21. Christopher DT. Evaluation of first-principles techniques for obtaining materials parameters of α-uranium and the (001) α-uranium surface. Phys Rev B. 2008;77(9):094119.

    Article  Google Scholar 

  22. Kucharczyk R, Jurczyszyn L, Hadzel P. Adsorption of thin films of titanium on tungsten (111) surface. Surf Sci. 2010;604(17–18):1524.

    Article  Google Scholar 

  23. Zarshenas M, Asadabadi JS. Theoretical study of α-U/W(110) thin films from density functional theory calculations: structural, magnetic and electronic properties. Thin Solid Films. 2012;520(7):2901.

    Article  Google Scholar 

  24. Bihan LT, Heathman S, Idiri M, Lander GH, Wills JM, Lawson AC, Lindbaum A. Structural behavior of α-uranium with pressures to 100 GPa. Phys Rev B. 2003;67(13):134102.

    Article  Google Scholar 

  25. Gaffet E, Louison C, Harmelin M, Faudot F. Metastable phase transformations induced by ball-milling in the Cu W system. Mater Sci Eng A. 1991;134:1380.

    Article  Google Scholar 

  26. Luniakov YV. First principle simulations of the surface diffusion of Si and Me adatoms on the Si(111) \( \sqrt 3 \) × \( \sqrt 3 \)-Me surface, Me = Al, Ga, In, Pb. Surf Sci. 2011;605(19–20):1866.

  27. Zhang X, Wang CY. First-principles study of vacancy formation and migration in clean and Re-doped γ′-Ni3Al. Acta Mater. 2009;57(1):224.

    Article  Google Scholar 

  28. Barbosa KO, Assali LVC, Machado WVM, Justo JF. Structural and electronic properties of Ti impurities in SiC: an ab initio investigation. Comput Mater Sci. 2004;30(1–2):57.

    Article  Google Scholar 

  29. Zhang SB, Northrup JE. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys Rev Lett. 1991;67(17):2339.

    Article  Google Scholar 

  30. Jiang DE, Carter EA. Prediction of strong adhesion at the MoSi2/Fe interface. Acta Mater. 2005;53(17):4489.

    Article  Google Scholar 

  31. Qi Y, Louis GHJ, Newton O, James BA. A first principles study of adhesion and adhesive transfer at Al(111)/graphite(0001). Surf Sci. 2005;581(2–3):155.

    Article  Google Scholar 

  32. Abhijit C, Syuichi N, Fujio M. Structure and property correlation for Ag deposition on α-Al2O3—a first principle study. J Mol Gr Modell. 2005;23(5):447.

    Article  Google Scholar 

  33. Gong HR. Electronic structure and related properties of Pd/TiAl membranes. Intermetallics. 2009;17(7):562.

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (Nos. 51074103 and 51104098) and shanghai university scientific selection and cultivation for outstanding young teachers in special fund and Innovation Program of Shanghai University (SDCX2012011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Xin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, JB., Ru, LL., Wu, GX. et al. First principles application for mechanical properties of Ti-doped W particles enhanced U matrix composite. Rare Met. 37, 815–822 (2018). https://doi.org/10.1007/s12598-015-0512-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0512-7

Keywords

Navigation