Skip to main content
Log in

Epoxidation of propylene by molecular oxygen over unsupported AgCu x bimetallic catalyst

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The unsupported Cu and Ag catalysts with different oxidation states were prepared, and their catalytic performances for propylene epoxidation were investigated. The metallic Cu catalyst exhibits much higher catalytic activity and propylene oxide (PO) selectivity than Cu2O and CuO catalysts. The Cu0 species are the main active sites for propylene epoxidation, but Cu2O and CuO species are in favor of CO2 and acrolein production. The PO selectivity of 54.2 % and propylene conversion of 2.6 % can be achieved over the metallic Cu catalyst at 160 °C in initial stage, but metallic Cu catalyst would be oxidized to Cu2O during propylene epoxidation, resulting in a sharp decrease in the PO selectivity and propylene conversion. Nanosize AgCu x bimetallic catalysts were prepared. It is found that adding Ag to the metallic Cu catalysts can prevent the oxidation of Cu and make AgCu x bimetallic catalysts more stable under the condition of propylene epoxidation. The Ag/Cu molar ratio can remarkably affect the catalytic performance of AgCu x catalyst and the selectivity to PO and acrolein. After AgCu x was supported on MO x -modified α-Al2O3, its catalytic performance can be improved and has a close relationship with the acid–base property of support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM. The production of propene oxide: catalytic processes and recent developments. Ind Eng Chem Res. 2006;45(10):3447.

    Article  Google Scholar 

  2. Tullo AH, Short PL. Propylene oxide routes take off. Chem Eng News. 2006;84(41):22.

    Article  Google Scholar 

  3. Blanco-Brieva G, Capel-Sánchez MC, Frutos MP, Padilla-Polo A, Campos-Martín JM, Fierro JLG. New two-step process for propene oxide production (HPPO) based on the direct synthesis of hydrogen peroxide. Ind Eng Chem Res. 2008;47(21):8011.

    Article  Google Scholar 

  4. Hayashi T, Tanaka K, Haruta M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J Catal. 1998;178(2):566.

    Article  Google Scholar 

  5. Yap N, Andres RP, Delgass WN. Reactivity and stability of Au in and on TS-1 for epoxidation of propylene with H2 and O2. J Catal. 2004;226(1):156.

    Article  Google Scholar 

  6. Lu GZ, Zuo XB. Epoxidation of propylene by air over modified silver catalyst. Catal Lett. 1999;58(1):67.

    Article  Google Scholar 

  7. Jin GJ, Lu GZ, Guo YL, Guo Y, Wang JS, Kong WY, Liu XH. Effect of preparation condition on performance of Ag–MoO3/ZrO2 catalyst for direct epoxidation of propylene by molecular oxygen. J Mol Catal A Chem. 2005;232(1–2):165.

    Article  Google Scholar 

  8. Yao W, Guo YL, Lu GZ, Liu XH, Guo Y, Wang YQ, Wang JS, Zhang ZG. Epoxidation of propylene by molecular oxygen over the Ag–Y2O3–K2O/α-Al2O3. Catal Lett. 2007;119(1–2):185.

    Article  Google Scholar 

  9. Lu JQ, Bravo-Suárez JJ, Haruta M, Oyama ST. Direct propylene epoxidation over modified Ag/CaCO3 catalysts. Appl Catal A. 2006;302(2):283.

    Article  Google Scholar 

  10. Lu JQ, Luo MF, Lei H, Li C. Epoxidation of propylene on NaCl-modified silver catalysts with air as the oxidant. Appl Catal A. 2002;237(1–2):11.

    Article  Google Scholar 

  11. Lu JQ, Bravo-Suárez JJ, Takahashi A, Haruta M, Oyama ST. In situ UV–Vis studies of the effect of particle size on the epoxidation of ethylene and propylene on supported silver catalysts with molecular oxygen. J Catal. 2005;232(1):85.

    Article  Google Scholar 

  12. Seubsai A, Kahn M, Senkan S. New catalytic materials for the direct epoxidation of propylene by molecular oxygen. Chem Cat Chem. 2011;3(1):174.

    Google Scholar 

  13. Long WJ, Zhai QG, He JL, Zhang QH, Deng WP, Wang Y. Significant synergistic effect between supported ruthenium and copper oxides for propylene epoxidation by oxygen. Chem Plus Chem. 2012;77(1):27.

    Google Scholar 

  14. Torres D, Lopez N, Illas F, Lambert RM. Why copper is intrinsically more selective than silver in alkene epoxidation: ethylene oxidation on Cu(111) versus Ag(111). J Am Chem Soc. 2005;127(31):10774.

    Article  Google Scholar 

  15. Cropley RL, Williams FJ, Urquhart AJ, Vaughan OPH, Tikhov MS, Lambert RM. Efficient epoxidation of a terminal alkene containing allylic hydrogen atoms: trans-methylstyrene on Cu(111). J Am Chem Soc. 2005;127(16):6069.

    Article  Google Scholar 

  16. Torres D, Lopez N, Illas F, Lambert RM. Low-basicity oxygen atoms: a key in the search for propylene epoxidation catalysts. Angew Chem Int Ed. 2007;119(12):2101.

    Article  Google Scholar 

  17. Vaughan OPH, Kyriakou G, Macleod N, Tikhov M, Lambert RM. Copper as a selective catalyst for the epoxidation of propene. J Catal. 2005;236(2):401.

    Article  Google Scholar 

  18. Zhu WM, Zhang QH, Wang Y. Cu(I)-catalyzed epoxidation of propylene by molecular oxygen. J Phys Chem C. 2008;112(20):7731.

    Article  Google Scholar 

  19. Yang LJ, He JL, Zhang QH, Wang Y. Copper-catalyzed propylene epoxidation by oxygen: significant promoting effect of vanadium on unsupported copper catalyst. J Catal. 2010;276(1):76.

    Article  Google Scholar 

  20. Su WG, Wang SG, Ying PL, Feng ZC, Li C. A molecular insight into propylene epoxidation on Cu/SiO2 catalysts using O2 as oxidant. J Catal. 2009;268(1):165.

    Article  Google Scholar 

  21. Zemichael FW, Palermo A, Tikhov MS, Lambert RM. Propene epoxidation over K-promoted Ag/CaCO3 catalyst: the effect of metal particle size. Catal Lett. 2002;80(3–4):93.

    Article  Google Scholar 

  22. Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlögl R, Pellin MJ, Curtiss LA, Vajda S. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science. 2010;328(5975):224.

    Article  Google Scholar 

  23. Fan J, Dai YH, Li YL, Zheng NF, Guo JF, Yan XQ, Stucky GD. Low-temperature, highly selective, gas-phase oxidation of benzyl alcohol over mesoporous K–Cu–TiO2 with stable copper (I) oxidation state. J Am Chem Soc. 2009;131(43):15568.

    Article  Google Scholar 

  24. Tao F, Salmeron M. In situ studies of chemistry and structure of materials in reactive environments. Science. 2011;331(6014):171.

    Article  Google Scholar 

  25. Nørskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljiwancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH. Universality in heterogeneous catalysis. J Catal. 2002;209(2):275.

    Article  Google Scholar 

  26. Campbell CT, Peden CHF. Oxygen vacancies and catalysis on ceria surfaces. Science. 2005;309(5735):713.

    Article  Google Scholar 

  27. Molina LM, Lee S, Sell K, Barcaro G, Fortunelli A, Lee B, Seifert S, Winans RE, Wlam JW, Pellin MJ, Barke I, Oeynhausen V, Lei Y, Meyer RJ, Alonso JA, Rodriguez AF, Kleibert A, Giorgio S, Henry CR, Meiwes-broer KH, Vajda S. Size-dependent selectivity and activity of silver nanoclusters in the partial oxidation of propylene to propylene oxide and acrolein: a joint experimental and theoretical study. Catal Today. 2011;160(1):116.

    Article  Google Scholar 

  28. Marimuthu A, Zhang JW, Linic S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science. 2013;339(6217):1590.

    Article  Google Scholar 

  29. Denton AR, Ashcroft NW. Vegard’s law. Phys Rev A. 1991;43(6):3161.

    Article  Google Scholar 

  30. Liu DX, Zemlyanov D, Wu TP, Lobo-Lapidus RJ, Dumesic JA, Miller JT, Marshall CL. Deactivation mechanistic studies of copper chromite catalyst for selective hydrogenation of 2-furfuraldehyde. J Catal. 2013;299:336.

    Article  Google Scholar 

  31. Menon U, Poelman H, Bliznuk V, Galvita VV, Poelman D, Marin GB. Nature of the active sites for the total oxidation of toluene by CuO–CeO2/Al2O3. J Catal. 2012;295:91.

    Article  Google Scholar 

  32. Linic S, Barteau MA. Control of ethylene epoxidation selectivity by surface oxametallacycles. J Am Chem Soc. 2003;125(14):4034.

    Article  Google Scholar 

  33. Grasselli RK. Genesis of site isolation and phase cooperation in selective oxidation catalysis. Topics Catal. 2001;15(2–4):93.

    Article  Google Scholar 

  34. Geenen PV, Boss HJ, Pott GT. A study of the vapor-phase epoxidation of propylene and ethylene on silver and silver–gold alloy catalysts. J Catal. 1982;77(2):499.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Basic Research Program of China (No. 2010CB732300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Zhong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Guo, YL., Guo, Y. et al. Epoxidation of propylene by molecular oxygen over unsupported AgCu x bimetallic catalyst. Rare Met. 34, 477–490 (2015). https://doi.org/10.1007/s12598-015-0500-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0500-y

Keywords

Navigation