Skip to main content
Log in

Dielectric properties of AlN/Mo composite ceramics prepared by spark plasma sintering method at different processing conditions

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this study, the effects of powder mixed method, sintering temperature, and the additive amount of the conductive phase on the dielectric loss tangent and permittivity constant of AlN/Mo composite ceramics were investigated. All the ceramic samples were prepared by spark plasma sintering (SPS). AlN composite ceramics with additional 10 vol% Mo sintered at 1400 °C holding for 5 min exhibit the best dielectric loss tangent, which is greater than 0.23. AlN/Mo ceramics with additional 20 vol% Mo become conductive, with the resistivity of 0.05–0.06 Ω·m. High-energy ball milling is better than magnetic stirring powder mixing method. In addition, the additive Mo and lower sintering temperature lead to a better property with the increase in the electromagnetic wave frequency range of 1 × 103–1 × 106 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Orfeo S, Giuseppe P. Residual stresses and R-curve behavior of AlN/Mo composite. J Eur Ceram Soc. 2001;21(3):269.

    Article  Google Scholar 

  2. Qiao L, Zhou H. Thermal conductivity of AlN ceramics sintered with CaF2 and YF3. Ceram Int. 2003;29(8):893.

    Article  CAS  Google Scholar 

  3. Komeya K, Inoue H, Tsuge A. Role of Y2O3 and SiO2 additions in sintering of AlN. J Am Ceram Soc. 1974;57(9):411.

    Article  CAS  Google Scholar 

  4. Komeya K, Tsuge A, Inoue A. Effect of CaCO3 addition on the sintering of AlN. J Mater Sci Lett. 1982;1(8):325.

    Article  CAS  Google Scholar 

  5. Xiulan H, Feng Y. Thermal conductivity of spark plasma sintered AlN ceramics with multiple components sintering additive. J Alloys Compd. 2010;496(1–2):413.

    Google Scholar 

  6. Liu Y, Zhou H, Qiao L, Wu Y. Low-temperature sintering of aluminum nitride with YF3–CaF2 binary additive. J Mater Sci Lett. 1999;18(9):703.

    Article  CAS  Google Scholar 

  7. Jarrige J, Bouzouita K, Doradoux C, Billy M. A new method for fabrication of dense aluminium nitride bodies at a temperature as low as 1600°C. J Eur Ceram Soc. 1993;12(4):279.

    Article  CAS  Google Scholar 

  8. Qiao L, Zhou H, Xue H, Wang S. Effect of Y2O3 on low temperature sintering and thermal conductivity of AlN ceramics. J Eur Ceram Soc. 2003;23(1):61.

    Article  CAS  Google Scholar 

  9. Mandal S, Ray AK. Correlation between the mechanical properties and the microstructural behaviour of Al2O3–(Ag–Cu–Ti) brazed joints. Mater Sci Eng, A. 2004;383(2):235.

    Article  Google Scholar 

  10. Nakano H, Watari K, Hayashi H, Urabe K. Microstructural characterization of high-thermal-conductivity aluminum nitride ceramic. J Am Ceram Soc. 2002;85(12):3093.

    Article  CAS  Google Scholar 

  11. Pezzotti G, Nakahira A, Tajika M. Effect of extended annealing cycles on the thermal conductivity of AlN/Y2O3 ceramics. J Eur Ceram Soc. 2000;20(9):1319.

    Article  CAS  Google Scholar 

  12. Amir AK, Jean CL. Aluminum nitride-molybdenum ceramic matrix composites. Influence of molybdenum addition on electrical, mechanical and thermal. J Eur Ceram Soc. 1997;17(9):1885.

    Google Scholar 

  13. Lefort P, Queriaud R. Compatibility between molybdenum and aluminium nitride. J Eur Ceram Soc. 1994;13(5):329.

    Article  CAS  Google Scholar 

  14. Salmani E, Benyoussef A, Ez-Zahraouy H, Saidi EH. Mounkachi O. First-principles study and electronic structures of Mn-doped ultrathin ZnO nanofilms. Chin Phys B. 2012;21(10):106601.

    Article  Google Scholar 

  15. Lu L, Ma Z, Wang FC, Liu YB. Friction and wear behaviors of Al2O3–13 wt%TiO2 coatings. Rare Met. 2013;32(1):87.

    Article  CAS  Google Scholar 

  16. Jack HE, Roy WR, John WL. Microstructural effects on the thermal conductivity of polycrystalline aluminum nitride. J Am Ceram Soc. 1991;74(9):2214.

    Article  Google Scholar 

  17. Kusunose T, Sekino T, Niihara K. Production of grain boundary phase as conducting pathway in insulating AlN ceramics. Acta Mater. 2007;55(18):6170.

    Article  CAS  Google Scholar 

  18. Kume S, Yasuoka M, Omura N, Watari K. Effects of annealing on dielectric loss and microstructure of aluminum nitride ceramics. J Am Ceram Soc. 2005;88(11):3229.

    Article  CAS  Google Scholar 

  19. Mikael B, Abe DK. AlN-based lossy ceramics for high average power microwave devices: performance-property correlation. J Eur Ceram Soc. 2003;23(14):2705.

    Article  Google Scholar 

  20. Wang J, Jia X, Jia C. Dielectric properties of spark plasma sintering AlN–W composite ceramics. Rare Met. 2011;30(6):633.

    Article  CAS  Google Scholar 

  21. Kume S, Yasuoka M, Omura N, Watari K. Annealing effect on dielectric property of AlN ceramics. J Eur Ceram Soc. 2006;26(10–11):1831.

    Article  CAS  Google Scholar 

  22. Dudney NJ. Effect of interfacial space charge polarization on the ionic conductivity of composite electrolytes. J Am Ceram Soc. 1985;68(10):538.

    Article  CAS  Google Scholar 

  23. Yang LW, Li C, Jiang BX, Yang ZM. Thermal simulation of SiC single crystal growth process and its applications for seed crystal fixation. Chin J Rare Met. 2013;37(1):76.

    Google Scholar 

  24. Kieffer J, Wagner JB. Electrical conductivity ofmetal-metal oxide composites. J Electrochem Soc. 1998;135(1):198.

    Article  Google Scholar 

  25. Liu D, Yan C. Effects of Mo on phase structure and up-conversion emissions of Er: Al2O3 nanocrystals. Phys Mech Astron. 2012;55(8):1417.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the International Cooperation Project between China and Russia (No. 2010DFR50360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Chang Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Jia, CC., Cao, WB. et al. Dielectric properties of AlN/Mo composite ceramics prepared by spark plasma sintering method at different processing conditions. Rare Met. 41, 1369–1374 (2022). https://doi.org/10.1007/s12598-015-0486-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0486-5

Keywords

Navigation