Skip to main content
Log in

Microwave-assisted synthesis of L-cysteine-capped nickel nanoparticles for catalytic reduction of 4-nitrophenol

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A simple and efficient microwave-assisted procedure for synthesis of L-cysteine-capped nickel nanoparticles (cyst-Ni NPs) in ethylene glycol solvent was demonstrated. The as-synthesised NPs were characterised by ultraviolet–visible (UV–Vis) spectrophotometer, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and X-ray diffractometry (XRD). The cyst-Ni NPs are proved to be excellent heterogeneous catalysts for the 100 % reduction of 4-nitrophenol (4-NPh) in the presence of reductant (NaBH4) within reaction time of 40 s. In contrast, Raney nickel in similar sample environments shows only 25.5 % reduction. The kinetic and energetic behaviours of cyst-Ni NPs were also studied, and the reduction reaction is determined to follow pseudo-first-order kinetics with a rate constant value of 0.115 s−1 and activation energy of 36.1 kJ·mol−1. In addition to its high catalytic competence, cyst-Ni NPs catalyst exhibits excellent recyclability with negligible catalytic poisoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pigozzi G, Mukherji D, Gilles R, Barbier B, Kostorz G. Ni(3)Si(Al)/a-SiO(x) core-shell nanoparticles: characterization, shell formation, and stability. Nanotechnology. 2006;17(16):4195.

    Article  Google Scholar 

  2. Abedini A, Daud A, Abdul Hamid M, Kamil Othman N, Saion E. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles. Nanoscale Res Lett. 2013;8(1):1.

    Article  Google Scholar 

  3. Shah AT, Din MI, Farooq U, Butt MTZ, Athar M, Chaudhary MA, Ahmad MN, Mirza ML. Fabrication of nickel nanoparticles modified electrode by reverse microemulsion method and its application in electrolytic oxidation of ethanol. Colloid Surf A. 2012;405:19.

    Article  Google Scholar 

  4. Yeom SH, Han ME, Kang BH, Kim KJ, Yuan H, Eum NS, Kang SW. Enhancement of the sensitivity of LSPR-based CRP immunosensors by Au nanoparticle antibody conjugation. Sens Actuat B Chem. 2013;177:376.

    Article  Google Scholar 

  5. Wang XY, Li YJ, Xu C, Kong L, Li L. Synthesis and characterization of Li4Ti5O12 via a hydrolysis process from TiCl4 aqueous solution. Rare Met. 2014;33(4):459.

    Article  Google Scholar 

  6. Gopal R, Singh MK, Agarwal A, Singh SC, Swarnkar RK. Synthesis of nickel nanomaterial by pulsed laser ablation in liquid medium and its characterization. AIP Conf Proc. 2009;1147(1):199.

    Article  Google Scholar 

  7. Ding XF, Shen JY, Gao XJ, Wang J. Enhanced electrochemical properties of Sm0.2Ce0.8O1.9 film for SOFC electrolyte fabricated by pulsed laser deposition. Rare Met. DOI 10.1007/s12598-014-0396-y.

  8. Kalwar NH, Sirajuddin, Sherazi STH, Abro MI, Tagar ZA, Hassan SS, Junejo Y, Khattak MI. Synthesis of l-methionine stabilized nickel nanowires and their application for catalytic oxidative transfer hydrogenation of isopropanol. Appl Catal A-Gen. 2011;400(1–2):215.

    Article  Google Scholar 

  9. Liu QM, Yu RL, Qiu GZ, Fang Z, Chen AL, Zhao ZW. Optimization of separation processing of copper and iron of dump bioleaching solution by Li x N in Dexing Copper Mine. Trans Nonfer Met Soc. 2008;18(5):1258.

  10. Zhu HT, Zhang CY, Yin YS. Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. J Cryst Growth. 2004;270(3–4):722.

    Article  Google Scholar 

  11. Coussy O, Fen-Chong T. Crystallization, pore relaxation and micro-cryosuction in cohesive porous materials. C R Mecanique. 2005;333(6):507.

    Article  Google Scholar 

  12. Athawale AA, Katre PP, Kumar M, Majumdar MB. Synthesis of CTAB–IPA reduced copper nanoparticles. Mater Chem Phys. 2005;91(2–3):507.

    Article  Google Scholar 

  13. Hou Y, Kondoh H, Ohta T, Gao S. Size-controlled synthesis of nickel nanoparticles. Appl Surf Sci. 2005;241(1–2):218.

    Article  Google Scholar 

  14. Roselina NRN, Azizan A, Hyie KM, Jumahat A, Bakar MAA. Effect of pH on formation of nickel nanostructures through chemical reduction method. Proced Eng. 2013;68:43.

    Article  Google Scholar 

  15. Tontini G, Koch A Jr, Schmachtenberg VAV, Binder C, Klein AN, Drago V. Synthesis and magnetic properties of nickel micro urchins. Mater Res Bull. 2015;61:177.

    Article  Google Scholar 

  16. Chinnasamy CN, Jeyadevan B, Shinoda K, Tohji K, Narayanasamy A, Sato K, Hisano S. Synthesis and magnetic properties of face-centered-cubic and hexagonal-close-packed Ni nanoparticles through polyol process. J Appl Phys. 2005;97(10):10J309.

    Article  Google Scholar 

  17. Shinde VM, Madras G. Catalytic performance of highly dispersed Ni/TiO2 for dry and steam reforming of methane. RSC Adv. 2014;4(10):4817.

    Article  Google Scholar 

  18. Ajeet K, Amit S, Arnab D, Ravi S, Subho M. Controlled synthesis of size-tunable nickel and nickel oxide nanoparticles using water-in-oil microemulsions. Adv Nat Sci Nanosci Nanotechnol. 2013;4(2):025009.

    Article  Google Scholar 

  19. Wu SH, Chen DH. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J Colloid Interface Sci. 2003;259(2):282.

    Article  Google Scholar 

  20. Roy PS, Bhattacharya SK. Size-controlled synthesis, characterization and electrocatalytic behaviors of polymer-protected nickel nanoparticles: a comparison with respect to two polymers. RSC Adv. 2014;4(27):13892.

    Article  Google Scholar 

  21. Kujawa P, Rosiak JM. Pulse radiolysis of 2-[(methacryloyloxy)ethyl]trimethylammonium chloride in aqueous solution. Radiat Phys Chem. 2000;57(3–6):559.

    Article  Google Scholar 

  22. Sun Z, Chen Y, Ke Q, Yang Y, Yuan Y. Photocatalytic degradation of a cationic AZO dye by TiO2/bentonite nanocomposite. J Photochem Photobiol A. 2002;149(1–3):169.

  23. Du Y, Chen H, Chen R, Xu N. Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts. Appl Catal A Gen. 2004;277(1–2):259.

    Article  Google Scholar 

  24. Zhong Z, Subramanian AS, Highfield J, Carpenter K, Gedanken A. From discrete particles to spherical aggregates: a simple approach to the self-assembly of Au colloids. Chem-Eur J. 2005;11(5):1473.

    Article  Google Scholar 

  25. Fischer-Wolfarth J-H, Farmer JA, Flores-Camacho JM, Genest A, Yudanov IV, Rösch N, Campbell CT, Schauermann S, Freund HJ. Particle-size dependent heats of adsorption of CO on supported Pd nanoparticles as measured with a single-crystal microcalorimeter. Phys Rev B. 2010;81(24):241416.

    Article  Google Scholar 

  26. Zhang C, Hwang SY, Peng Z. Size-dependent oxygen reduction property of octahedral Pt–Ni nanoparticle electrocatalysts. J Mater Chem A. 2014;2(46):19778.

    Article  Google Scholar 

  27. Weber A, Seipenbusch M, Kasper G. Size effects in the catalytic activity of unsupported metallic nanoparticles. J Nanopart Res. 2003;5(3–4):293.

    Article  Google Scholar 

  28. Zhong Z, Subramanian AS, Highfield J, Carpenter K, Gedanken A. From discrete particles to spherical aggregates: a simple approach to the self-assembly of Au colloids. Chemistry. 2005;11(5):1473.

    Article  Google Scholar 

  29. Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta. 2007;1767(9):1073.

    Article  Google Scholar 

  30. Sirajuddin, Nafady A, Afridi HI, Sara S, Shah A, Niaz A. Direct synthesis and stabilization of Bi-sized cysteine-derived gold nanoparticles: reduction catalyst for methylene blue. J Iran Chem Soc. 2011;8(1):S34.

    Article  Google Scholar 

  31. Yoon M, Kim Y, Kim YM, Volkov V, Song HJ, Park YJ, Park IW. Superparamagnetic properties of nickel nanoparticles in an ion-exchange polymer film. Mater Chem Phys. 2005;91(1):104.

    Article  Google Scholar 

  32. Ma Z, Han H. One-step synthesis of cystine-coated gold nanoparticles in aqueous solution. Colloid Surf A. 2008;317(1–3):229.

    Article  Google Scholar 

  33. Chou KS, Lai YS. Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids. Mater Chem Phys. 2004;83(1):82.

  34. Watzky MA, Finke RG. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc. 1997;119(43):10382.

    Article  Google Scholar 

  35. Hu J, Odom T, Lieber C. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res. 1999;32(5):435.

    Article  Google Scholar 

  36. Soomro RA, Nafady A, Sirajuddin, Memon N, Sherazi TH, Kalwar NH. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions. Talanta. 2014;130:415.

    Article  Google Scholar 

  37. Seol SK, Kim D, Jung S, Chang WS. One-step synthesis of PEG-coated gold nanoparticles by rapid microwave heating. J Nanomater. 2013;2013:6.

    Article  Google Scholar 

  38. Sahoo PK, Kalyan Kamal SS, Kumar TJ, Sreedhar B, Singh AK, Srivastava SK. Synthesis of silver nanoparticles using facile wet chemical route. Def Sci J. 2009;59(4):447.

    Article  Google Scholar 

  39. Chaudhari A, Yan C-CS, Lee SL. Autopoisoning reactions over rough surface: a multifractal scaling analysis. Int J Chem Kinet. 2005;37(3):175.

  40. Lee S-L, Lee C-K. Heterogeneous reactions over fractal surfaces: a multifractal scaling analysis. Int J Quantum Chem. 1997;64(3):337.

    Article  Google Scholar 

  41. Chandra S, Kumar A, Tomar PK. Synthesis of Ni nanoparticles and their characterizations. J Saudi Chem Soc. 2014;18(5):437.

    Article  Google Scholar 

  42. Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol. 2007;41(14):5137.

    Article  Google Scholar 

  43. Zhu Z, Guo X, Wu S, Zhang R, Wang J, Li L. Preparation of nickel nanoparticles in spherical polyelectrolyte brush nanoreactor and their catalytic activity. Ind Eng Chem Res. 2011;50(24):13848.

    Article  Google Scholar 

  44. Jiang Z, Xie J, Jiang D, Jing J, Qin H. Facile route fabrication of nano-Ni core mesoporous-silica shell particles with high catalytic activity towards 4-nitrophenol reduction. Cryst Eng Commun. 2012;14(14):4601.

    Article  Google Scholar 

  45. Ozay H. Comparison study of low cost fly ash supported Cu, Co and Ni metal catalyst systems for the reduction of 4-nitrophenol. Sci Adv Mater. 2013;5(6):575.

    Article  Google Scholar 

  46. Wu XQ, Wu XW, Shen JS, Zhang HW. In situ formed metal nanoparticle systems for catalytic reduction of nitroaromatic compounds. RSC Adv. 2014;4(90):49287.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the King Saud University via their Research Project (No. RGP-VPP-236). The authors acknowledge facilities provided by the National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan Higher Education Commission (HEC), Pakistan, and the Interface Analysis Centre, University of Bristol, Bristol, United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razium Ali Soomro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalwar, N.H., Nafady, A., Soomro, R.A. et al. Microwave-assisted synthesis of L-cysteine-capped nickel nanoparticles for catalytic reduction of 4-nitrophenol. Rare Met. 34, 683–691 (2015). https://doi.org/10.1007/s12598-015-0475-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0475-8

Keywords

Navigation