Skip to main content
Log in

Electrical and optical properties of ZnO:Al films with different hydrogen contents in sputtering gas

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Aluminum-doped zinc oxide (ZnO:Al) films were deposited by direct current magnetron sputtering in incorporating hydrogen in sputtering gas at room temperature. The influences of hydrogen content in sputtering gas on the structural, optical, and electrical properties of ZnO:Al films were systematically investigated. It is found that hydrogen incorporated into ZnO lattice forms shallow donors in ZnO:Al films and plays an important role in the properties of ZnO:Al films. The electrical conductivity and infrared (IR) reflectance are improved due to the increase of electron carrier concentration, and the average transmittance decreases, which is ascribed to the strong scattering from the hydrogen incorporated and oxygen vacancies in ZnO:Al films. In this study, the resistivity of 5.5 × 10−4 Ω·cm is obtained, the average transmittance of the wavelength in the range of 400–900 nm is almost 86 %, and the IR reflectance reaches 75 % at 2,500 nm, which is higher than that of reported TCO films. The band gap determined by optical absorption is a result of competition between Burstein–Moss effect and many-body perturbation effect. However, the hydrogen content in sputtering gas is above 10 %, and the optical band gap shift is independent of hydrogen content in sputtering gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hong CS, Park HH, Moon J, Park HH. Effect of metal (Al, Ga, and In)-dopants and/or Ag-nanoparticles on the optical and electrical properties of ZnO thin films. Thin Solid Films. 2006;515(3):957.

    Article  Google Scholar 

  2. Oh BY, Jeong MC, Myoung JM. Stabilization in electrical characteristics of hydrogen-annealed ZnO:Al films. Appl Surf Sci. 2007;253(17):7157.

  3. Duenow JN, Gessert TA, Wood DM, Young DL, Coutts TJ. Effects of hydrogen content in sputtering gas on ZnO:Al electrical properties. J Non-Cryst Solids. 2008;354:2787.

    Article  Google Scholar 

  4. Couzinié-Devy F, Barreau N, Kessler J. Dependence of ZnO:Al properties on the substrate to target position in RF sputtering. Thin Solid Films. 2008;516(20):7094.

    Article  Google Scholar 

  5. Nomoto J-i, Konagai M, Okada K, Ito T, Miyata T, Minami T. Comparative study of resistivity characteristics between transparent conducting AZO and GZO thin films for use at high temperatures. Thin Solid Films. 2010;518(11):2937.

    Article  Google Scholar 

  6. Gong L, Ye ZZ, Lu JG, Zhu LP, Huang JY, Gu XQ, Zhao BH. Highly transparent conductive and near-infrared reflective ZnO:Al thin films. Vacuum. 2010;84(7):947.

    Article  Google Scholar 

  7. Lee C, Lim K, Song J. Highly textured ZnO thin films doped with indium prepared by the pyrosol method. Sol Energy Mater Sol Cells. 1996;43(1):37.

    Article  Google Scholar 

  8. Ito N, Sato Y, Song PK, Kaijio A, Inoue K, Shigesato Y. Electrical and optical properties of amorphous indium zinc oxide films. Thin Solid Films. 2006;496(1):99.

    Article  Google Scholar 

  9. Mandalapu LJ, Xiu FX, Yang Z, Liu JL. Ultraviolet photoconductive detectors based on Ga-doped ZnO films grown by molecular-beam epitaxy. Solid-State Electronics. 2007;51(7):1014.

    Article  Google Scholar 

  10. Ma QB, Ye ZZ, He HP, Zhu LP, Huang JY, Zhang YZ, Zhao BH. Influence of annealing temperature on the properties of transparent conductive and near-infrared reflective GZO films. Scr Mater. 2008;58:21.

    Article  Google Scholar 

  11. Shin SW, Sim KU, Moon J-H, Kim JH. The effect of processing parameters on the properties of Ga-doped ZnO thin films by RF magnetron sputtering. Curr Appl Phys. 2010;10(2):S274.

    Article  Google Scholar 

  12. Lin JC, Peng KC, Yeh TY, Lee SL. On the structure and characterization of Al, Sc-co-doped ZnO-films varying with 0–2.37 wt% Sc contents. Thin Solid Films. 2009;517(17):4715.

  13. Hsu FH, Wang NF, Tsai YZ, Chuang MC, Cheng YS, Houng MP. Study of working pressure on the optoelectrical properties of Al–Y codoped ZnO thin-film deposited using DC magnetron sputtering for solar cell applications. Appl Surf Sci. 2013;280:104.

  14. Chung YM, Moon CS, Jung WS, Han JG. The low temperature synthesis of Al doped ZnO films on glass and polymer using pulsed co-magnetron sputtering: H2 effect. Thin Solid Films. 2006;515(2):567.

    Article  Google Scholar 

  15. Dong JJ, Zhang XW, You JB, Cai PF, Yin ZG, An Q, Ma XB, Jin P, Wang ZG, Chu PK. Effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films: identification of hydrogen donors in ZnO. Appl Mater Interfaces. 2010;2(6):1780.

    Article  Google Scholar 

  16. Li YJ, Kaspar TC, Droubay TC, Zhu Z, Shutthanandan V, Nachimuthu P, Chambers SA. Electronic properties of H and O doped ZnO epitaxial films. Appl Phys Lett. 2008;92(15):152105.

    Article  Google Scholar 

  17. Van de Walle CG. Hydrogen as a cause of doping in zinc oxide. Phys Rev Lett. 2000;85(5):1012.

    Article  Google Scholar 

  18. Lavrov EV, Weber J, Borrnert F, Van de Walle CG, Helbig R. Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Phys Rev B. 2002;66(16):165205.

    Article  Google Scholar 

  19. Lavrov EV, Herklotz F, Weber J. Identification of two hydrogen donors in ZnO. Phys Rev B. 2009;79(16):165210.

    Article  Google Scholar 

  20. Qiu H, Meyer B, Wang Y, Wo C. Ionization energies of shallow donor states in ZnO created by reversible formation and depletion of H interstitials. Phys Rev Lett. 2008;101(23):236401.

    Article  Google Scholar 

  21. Jokela SJ, McCluskey MD. Structure and stability of O–H donors in ZnO from high-pressure and infrared spectroscopy. Phys Rev B. 2005;72(11):113201.

    Article  Google Scholar 

  22. Limpijumnongand S, Zhang SB. Resolving hydrogen binding sites by pressure-A first-principles prediction for ZnO. Appl Phys Lett. 2005;86(15):151910.

    Article  Google Scholar 

  23. Cizek J, Zaludova N, Vlach M, Danis S, Kuriplach J. Defect studies of ZnO single crystals electrochemically doped with hydrogen. J Appl Phys. 2008;103(5):053508.

  24. Studenikin SA, Golego Nickolay, Cocivera Michael. Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films. J Appl Phys. 2000;87(5):2413.

    Article  Google Scholar 

  25. Wang WW, Diao XG, Wang Z, Yang M, Wang TM, Wu Z. Preparation and characterization of high-performance direct current magnetron sputtered ZnO:Al films. Thin Solid Films. 2005;491(1–2):54.

    Article  Google Scholar 

  26. Tsuji T, Hirohashi M. Influence of oxygen partial pressure on transparency and conductivity of RF sputtered Al-doped ZnO thin films. Appl Surf Sci. 2000;157(1–2):47.

    Article  Google Scholar 

  27. Lee HW, Lau SP, Wang YG, Tse KY, Hng HH, Tay BK. Structural electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique. J Cryst Growth. 2004;268(3–4):596.

    Article  Google Scholar 

  28. Ma QB, Ye ZZ, He HP, Hu SH, Wang JR, Zhu LP, Zhang YZ, Zhao BH. Structural, electrical, and optical properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering. J Cryst Growth. 2007;304(1):64.

    Article  Google Scholar 

  29. Burstein E. Anomalous optical absorption limit in InSb. Phys Rev. 1954;93:632.

    Article  Google Scholar 

  30. Moss TS. The interpretation of the properties of indium antimonide. Proc Phys Soc London B. 1954;67:775.

    Article  Google Scholar 

  31. Dietz RE, Hopfield JJ, Thomas DG. Excitons and the absorption edge of ZnO. J Appl Phys. 1961;32(10):2282.

    Article  Google Scholar 

  32. Roth AP, Webb JB, Williams DF. Band-gap narrowing in heavily defect-doped ZnO. Phys Rev B. 1982;25(12):7836.

    Article  Google Scholar 

  33. Berggren KF, Sermelius BE. Band-gap narrowing in heavily doped many-vally semiconductors. Phys Rev B. 1981;24(4):1971.

    Article  Google Scholar 

  34. Wolff PA. Theory of the band structure of very degenerate semiconductors. Phys Rev. 1962;126(2):405.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 21101151 and 51272250). The authors appreciate Professor Ling-Ping Zhou (Hunan University) for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, F., Zhang, T., Gu, HW. et al. Electrical and optical properties of ZnO:Al films with different hydrogen contents in sputtering gas. Rare Met. 34, 173–177 (2015). https://doi.org/10.1007/s12598-014-0435-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0435-8

Keywords

Navigation