Skip to main content
Log in

Preparation and optical properties of tin dioxide inverse opal film

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As a novel structure, inverse opal, with three-dimensional periodic macropore and mesopore and huge specific surface area, has great promising applications. In this paper, tin dioxide (SnO2) inverse opal films were prepared with sol–gel method by cooperative opal template. The surface morphologies of SnO2 inverse opal films were examined by scanning electron microscopy (SEM), the inner structure of SnO2 inverse opal films was examined by transmission electron microscopy (TEM), the optical properties of SnO2 inverse opal films were studied and discussed in detail. Optical reflectance spectra reveal that, for the opal films, the wavelengths of the reflectance peak confirmed by the experimental reflectance spectra are consistent with the theoretical values; for the SnO2 inverse opal films, the wavelengths of the reflectance peak confirmed by the experimental reflectance spectra deviate from theoretical values largely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sözüer H, Haus J, Inguva R. Photonic bands: convergence problems with the plane-wave method. Phys Rev B. 1992;45(24):13962.

    Article  Google Scholar 

  2. Yan CH, Xie ZY, Wang ZF, Zhang ZJ, Wu YY, Zhang M. Preparation and ER performance of hard-shell composite TiO2/PS microspheres. Chin J Rare Met. 2013;37(4):650.

    CAS  Google Scholar 

  3. Liu Y, Hu X, Zhang D, Cheng B, Zhang D, Meng Q. Subpicosecond optical switching in polystyrene opal. Appl Phys Lett. 2005;86(15):151102.

    Article  Google Scholar 

  4. Scalora M, Dowling JP, Bowden CM, Bloemer MJ. Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials. Phys Rev Lett. 1994;73(10):1368.

    Article  CAS  Google Scholar 

  5. Shin JH, Moon JH. Bilayer inverse opal TiO2 electrodes for dye-sensitized solar cells via post-treatment. Langmuir. 2011;27(10):6311.

    Article  CAS  Google Scholar 

  6. Scott RWJ, Yang S, Chabanis G, Coombs N, Williams D, Ozin G. Tin dioxide opals and inverted opals: near–ideal microstructures for gas sensors. Adv Mater. 2001;13(19):1468.

    Article  CAS  Google Scholar 

  7. Stein A, Schroden RC. Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond. Curr Opin Solid State Mater Sci. 2001;5(6):553.

    Article  CAS  Google Scholar 

  8. Holland BT, Blanford CF, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science. 1998;281(5376):538.

    Article  CAS  Google Scholar 

  9. Norris DJ, Vlasov YA. Chemical approaches to three-dimensional semiconductor photonic crystals. Adv Mater. 2001;13(6):371.

    Article  CAS  Google Scholar 

  10. Holland BT, Blanford CF, Do T, Stein A. Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem Mater. 1999;11(3):795.

    Article  CAS  Google Scholar 

  11. Miguez H, Meseguer F, Lopez C, Holgado M, Andreasen G, Mifsud A, Fornés V. Germanium FCC structure from a colloidal crystal template. Langmuir. 2000;16(10):4405.

    Article  CAS  Google Scholar 

  12. Chung Y-W, Leu I-C, Lee J-H, Hon M-H. Filling behavior of ZnO nanoparticles into opal template via electrophoretic deposition and the fabrication of inverse opal (Discussion). Electrochim Acta. 2009;54(13):3677.

    Article  CAS  Google Scholar 

  13. Hatton B, Mishchenko L, Davis S, Sandhage KH, Aizenberg J. Assembly of large-area, highly ordered, crack-free inverse opal films. Proc Natl Acad Sci. 2010;107(23):10354.

    Article  CAS  Google Scholar 

  14. Zheng Z, Gao K, Luo Y, Li D, Meng Q, Wang Y, Zhang DZ. Rapidly infrared-assisted cooperatively self-assembled highly ordered multiscale porous materials. J Am Chem Soc. 2008;130(30):9785.

    Article  CAS  Google Scholar 

  15. Scharrer M, Wu X, Yamilov A, Cao H, Chang RPH. Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition. Appl Phys Lett. 2005;86(15):151113.

    Article  Google Scholar 

  16. Fu M, Zhou J, Xiao Q, Li B, Bai Y, Li L. Preparation and characterization of nanocrystalline ZnS/ZnO doped silica inverse opals. J Electroceram. 2008;21(14):374.

    Article  CAS  Google Scholar 

  17. Nagasawa M, Shionoya S, Makishima S. Vapor reaction growth of SnO2 single crystals and their properties. Jpn J Appl Phys. 1965;4(3):195.

    Article  CAS  Google Scholar 

  18. Scott RWJ, Yang SM, Chabanis G, Coombs N, Williams DE, Ozin GA. Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors. Adv Mater. 2001;13(19):1468.

    Article  CAS  Google Scholar 

  19. Scott RWJ, Yang SM, Coombs N, Ozin GA, Williams DE. Engineered sensitivity of structured tin dioxide chemical sensors: opaline architectures with controlled necking. Adv Funct Mater. 2003;13(3):225.

    Article  CAS  Google Scholar 

  20. Sutti A, Baratto C, Calestani G, Dionigi C, Ferroni M, Faglia G, Sberveglieri G. Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases. Sens Actuators B. 2008;130(1):567.

    Article  CAS  Google Scholar 

  21. Arsenault E, Soheilnia N, Ozin GA. Periodic macroporous nanocrystalline antimony-doped tin oxide electrode. ACS Nano. 2011;5(4):2984.

    Article  CAS  Google Scholar 

  22. Reese CE, Guerrero CD, Weissman JM, Lee K, Asher SA. Synthesis of highly charged, monodisperse polystyrene colloidal particles for the fabrication of photonic crystals. J Colloid Interface Sci. 2000;232(1):76.

    Article  CAS  Google Scholar 

  23. Pang CX, Zhang LX, Tan J, Ye ZM, Chen JH. The study of preparing nanocrystalline SnO2 by sol–gel method. J Guangxi Teach Educ Univ (Nat Sci Ed). 2006;23(9):26.

    Google Scholar 

  24. Meng Q-B, Gu Z-Z, Sato O, Fujishima A. Fabrication of highly ordered porous structures. Appl Phys Lett. 2000;77(26):4313.

    Article  CAS  Google Scholar 

  25. Yan G, Zhang X, Huang P, Wang L, Qi F, Feng B. Influence of deposition time on the morphology and optical properties of SiO2–ZnO composite photonic crystals. Chin Sci Bull. 2011;56(6):562.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51072177), Jiangsu Province Environmental Material Key Laboratory Project (No. 017375003), and Jiangsu Ordinary University Graduate Students Scientific Research Innovation Project (No. CXZZ12_0896). The authors would like to thank Zhi-Feng Wang professor for many useful discussions concerning the SEM image.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Bing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JQ., Wu, YY., Yuan, SS. et al. Preparation and optical properties of tin dioxide inverse opal film. Rare Met. 41, 1032–1036 (2022). https://doi.org/10.1007/s12598-014-0427-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0427-8

Keywords

Navigation