Skip to main content
Log in

Assessments of coefficients of linear thermal expansions for magnetic elements Fe, Co and Ni

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The coefficients of linear thermal expansions (CLEs) of magnetic elements Fe, Co and Ni were assessed from experimental information using theoretical models combined with MATLAB calculations. Model parameters can be determined accurately, and the assessed data are in good agreement with the experimental results. To facilitate the assessments, theories of thermal expansion were applied to separate CLEs into its nonmagnetic and magnetic components. The calculations of nonmagnetic contribution to CLEs were based on the modified Grüneisen–Debye model, in which the Debye temperature was regarded as an undetermined constant. In order to put the prediction of CLEs at the magnetic transition region on a sound physical basis, two kinds of theoretical models were innovatively used to calculate the magnetic contribution to CLEs, i.e., the Bragg–Williams model and the Fermi–Dirac distribution function. Model parameters were evaluated from experimental data using least square method. Detailed comparisons were made with the published experimental data and the calculated total CLEs. A satisfactory agreement is reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yang Z, Liu XP, Fu J, Zhao XS, Jiang LJ, Wang SM. Thermal expansion properties of Fe–Ni–Co super-invar alloy with Mn. Chin J Rare Met. 2013;37(3):501.

    Google Scholar 

  2. Richter F, Lotter U. On the volume magnetostriction of nickel, iron and cobalt. Phys Status Solidi (B). 1969;34(2):149.

    Article  Google Scholar 

  3. White GK. Thermal expansion of magnetic metals at low temperatures. Proc Phys Soc. 1965;86(1):159.

    Article  Google Scholar 

  4. Owen EA, Jones DM. Effect of grain size on the crystal structure of cobalt. Proc Phys Soc (B). 1954;67(6):456.

    Article  Google Scholar 

  5. Nix FC, Macnair D. The thermal expansion of pure metals: copper, gold, aluminum, nickel and iron. Phys Rev. 1941;60(8):597.

    Article  Google Scholar 

  6. Kollie TG. Measurement of the thermal-expansion coefficient of nickel from 300 to 1,000 K and determination of the power-law constants near the Curie temperature. Phys Rev B. 1977;16(11):4872.

    Article  Google Scholar 

  7. Yousuf M, Sahu PC, Jajoo HK, Rajagopalan S, Rajan KG. Effect of magnetic transition on the lattice expansion of nickel. J Phys F: Met Phys. 1986;16(3):373.

    Article  Google Scholar 

  8. Clark AF. Low temperature thermal expansion of some metallic alloys. Cryogenics. 1968;8(5):282.

    Article  Google Scholar 

  9. Totskii E. Experimental determination of the coefficient of linear expansion of metals and alloys (dilatometer for measuring thermal expansion of metals and alloys by Henning method at temperatures minus 194 degrees to plus 1,100 degrees C). High Temp. 1964;2:181.

    Google Scholar 

  10. Faisst TA. Determination of the critical exponent of the linear thermal expansion coefficient of nickel by neutron diffraction. J Phys: Condens Matter. 1989;1(33):5805.

    Google Scholar 

  11. Ma L, Liu ZW, Zeng DC, Zhong XP, Zhang XZ. Magnetic properties and magnetoresistance of Co x C1-x granular films prepared by magnetron sputtering. Sci China Phys Mech Astron. 2011;54(7):1218.

    Article  Google Scholar 

  12. Li PF, Cao HJ. Lattice distortion in disordered antiferromagnetic XY models. Chin Phys B. 2012;21(7):077501.

    Article  Google Scholar 

  13. Lu XG, Selleby M, Sundman B. Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements. Calphad. 2005;29(1):68.

    Article  Google Scholar 

  14. Lu XG, Selleby M, Sundman B. Theoretical modeling of molar volume and thermal expansion. Acta Mater. 2005;53(8):2259.

    Article  Google Scholar 

  15. Guillermet AF. Critical evaluation of the thermodynamic properties of cobalt. Int J Thermophys. 1987;8(4):481.

    Article  Google Scholar 

  16. Guillermet AF. The representation of volume effects in assessments of the thermodynamic properties of ferromagnetic elements. High Temp. 1987;19(6):639.

    Google Scholar 

  17. Huang K. Solid State Physics. Beijing: Peking University Press; 2009. 130.

    Google Scholar 

  18. Birgeneau RJ, Cordes J, Dolling G, Woods ADB. Normal modes of vibration in nickel. Phys Rev. 1964;136(5A):A1359.

    Article  Google Scholar 

  19. Major J, Mezei F, Nagy E, Sváb E, Tichy G. Thermal expansion coefficient of nickel near the Curie point. Phys Lett A. 1971;35(5):377.

    Article  Google Scholar 

  20. Söffge F, Steichele E, Stierstadt K. Thermal expansion anomaly of nickel near the Curie point. Phys. Status Solidi (A). 1977;42(2):621.

    Article  Google Scholar 

  21. Hao SM, Jiang M, Li HX. Materials Thermodynamics. Beijing: Chemical Industry Press; 2010. 17.

    Google Scholar 

  22. Kittel C. Introduction to Solid State, Translated by Xiang JZ, Wu XH. Beijing: Chemical Industry Press; 2005. 439.

  23. Gray DE. American Institute of Physics Handbook. New York: McGraw-Hill; 1972. 4.

    Google Scholar 

  24. Touloukian YS, Kirky RK, Taylor RE, Desai PD. Thermal Properties of Matter, Thermal Expansion of Metallic Elements and Alloys. TPRC, Data Books. New York: Plenum Press; 1975. 70.

    Google Scholar 

  25. Gilat A. MATLAB: an Introduction with Applications. New York: Wiley; 2008. 191.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by China Postdoctoral Science Foundation (No. 2009045110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Li, XB., Zhang, B. et al. Assessments of coefficients of linear thermal expansions for magnetic elements Fe, Co and Ni. Rare Met. 35, 481–486 (2016). https://doi.org/10.1007/s12598-014-0387-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0387-z

Keywords

Navigation