Skip to main content

Advertisement

Log in

Boron removal from metallurgical grade silicon by slag refining based on GA-BP neural network

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In order to investigate the boron removal effect in slag refining process, intermediate frequency furnace was used to purify boron in SiO2-CaO-Na3AlF6-CaSiO3 slag system at 1,550 °C, and back propagation (BP) neural network was used to model the relationship between slag compositions and boron content in SiO2-CaO-Na3AlF6-CaSiO3 slag system. The BP neural network predicted error is below 2.38 %. The prediction results show that the slag composition has a significant influence on boron removal. Increasing the basicity of slag by adding CaO or Na3AlF6 to CaSiO3-based slag could contribute to the boron removal, and the addition of Na3AlF6 has a better removal effect in comparison with the addition of CaO. The oxidizing characteristic of CaSiO3 results in the ineffective removal with the addition of SiO2. The increase of oxygen potential (\(p_{{{\text{O}}_{2} }}\)) in the CaO-Na3AlF6-CaSiO3 slag system by varying the SiO2 proportion can also contribute to the boron removal in silicon ingot. The best slag composition to remove boron was predicted by BP neural network using genetic algorithm (GA). The predicted results show that the mass fraction of boron in silicon reduces from 14.0000 × 10−6 to 0.4366 × 10−6 after slag melting using 23.12 % SiO2-10.44 % CaO-16.83 % Na3AlF6-49.61 % CaSiO3 slag system, close to the experimental boron content in silicon which is below 0.5 × 10−6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zheng SS, Thorvald E, Merete T, Lue XT. Separation of phosphorus from silicon by induction vacuum refining. Sep Purif Technol. 2011;82:128.

    Article  CAS  Google Scholar 

  2. Reimann C, Trempa M, Jung T, Friedrich J, Muller G. Modeling of incorporation of O, N, C and formation of related precipitates during directional solidification of silicon under consideration of avariable processing parameters. J Cryst Growth. 2010;312(7):878.

    Article  CAS  Google Scholar 

  3. Martorano MA, Ferreira Neto JB, Oliveira TS, Tsubaki TO. Refining of metallurgical silicon by directional solidification. Mater Sci Eng B. 2011;176(3):217.

    Article  CAS  Google Scholar 

  4. Yves D. Purification of silicon for photovoltaic applications. J Cryst Growth. 2012;360:61.

    Article  Google Scholar 

  5. Yu ZL, Chen Jh, Xie G, Ma WH, Xie KQ. Aluminum removal from metallurgical grade silicon with pressure leaching. Chin J Rare Met. 2013;37(3):453.

    CAS  Google Scholar 

  6. Leandro AVT, Yomei T, Toshinobu Y, Kazuki M. Behavior and state of boron in CaO-SiO2 slags during refining of solar grade silicon. ISIJ Int. 2009;49(6):777.

    Article  Google Scholar 

  7. Johnston MD, Barati M. Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications. Sol Energy Mater Sol Cell. 2010;94(12):2085.

    Article  CAS  Google Scholar 

  8. Wu JJ, Ma WH, Jia BJ, Yang B, Liu DC, Dai YN. Boron removal from metallurgical grade silicon using a CaO-Li2O-SiO2 molten slag refining technique. J Non-Cryst Solids. 2012;358(23):3079.

    Article  CAS  Google Scholar 

  9. Cai J, Li JT, Chen WH, Chen C, Luo XT. Boron removal from metallurgical silicon using CaO-SiO2-CaF2 slags. Trans Nonferrous Met Soc China. 2011;21(6):1402.

    Article  CAS  Google Scholar 

  10. Luo DW, Liu N, Lu YP, Zhang GL, Li TJ. Removal of boron from metallurgical grade silicon by electromagnetic induction slag melting. Trans Nonferrous Met Soc China. 2011;21(5):1178.

    Article  CAS  Google Scholar 

  11. Ding Z, Ma WH, Wei KX, Wu JJ, Zhou Y, Xie KQ. Boron removal from metallurgical-grade silicon using lithium containing slag. J Non-Cryst Solid. 2012;358(18):2708.

    Article  CAS  Google Scholar 

  12. Liu K, Guo WY, Shen XL, Tan ZF. Research on the forecast model of electricity power industry loan based on GA-BP neural network. Energy Procedia. 2014;14:1918.

    Google Scholar 

  13. Yu SW, Zhu KJ, Diao FQ. A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction. Appl Math Comput. 2008;195(1):66.

    Google Scholar 

  14. Zhang L, Sun S, Jahanshahi S. An approach to modeling Al2O3 containing slags with the cell model. J Phase Equilib Diffus. 2007;28(1):121.

    Article  CAS  Google Scholar 

  15. Zhang L, Tan Y, Li JY, Liu Y, Wang DK. Study of boron removal from molten silicon by slag refining under atmosphere. Mater Sci Semicond Process. 2013;16(6):1645.

    Article  CAS  Google Scholar 

  16. Johnston MD, Barati M. Effect of slag basicity and oxygen potential on the distribution of boron and phosphorus between slag and silicon. J Non-Cryst Solid. 2011;357(3):970.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National High Technology Research and Development Program of China (No. 2012AA062302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Min Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, SL., Lu, HM., Wang, PP. et al. Boron removal from metallurgical grade silicon by slag refining based on GA-BP neural network. Rare Met. 40, 237–242 (2021). https://doi.org/10.1007/s12598-014-0373-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0373-5

Keywords

Navigation