Skip to main content

Advertisement

Log in

Development of a LiFePO4-based high power lithium secondary battery for HEVs applications

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A LiFePO4-type lithium secondary battery cell of 8 Ah capacity with a high energy density and power density was developed for hybrid electric vehicle (HEV) applications by optimizing the key raw materials and process design. The 8 Ah class LiFePO4 cell with an energy density of 77.2 Wh·kg−1 exhibits a power density of 2818 W·kg−1 at 50 % SOC (state of charge). The battery shows good cyclic capability with the capacity retention of 81.1 % after 1,870 cycles at 5C charge and 10C discharge rates. It is demonstrated that the cells have an excellent balance of high-power, high-energy, low temperature, and long-life performance for meeting the requirements of HEV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schiermeier, Tollefson J, Scully T, Witze A, Morton O. Titre du document/document title. Nature. 2008;454:816.

    Article  CAS  Google Scholar 

  2. Wu Y, Pei F, Jia LL, Liu XL, Zhang WH, Liu P. Overview of recovery technique of valuable metals from spent lithium ion batteries. Chin J Rare Met. 2013;37(2):320.

    CAS  Google Scholar 

  3. Bi J, Shao S, Guan W, Wang L. State of charge estimation of Li-ion batteries in electric vehicle based on radial-basis-function neural network. Chin Phys B. 2012;21(11):118801.

    Article  CAS  Google Scholar 

  4. Zhao L, Pan HL, Hu YS, Li H, Chen LQ. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery. Chin Phys B. 2012;21(2):028201.

    Article  CAS  Google Scholar 

  5. Jaiswal A, Horne CR, Chang O, Zhang W, Kong W, Wang E, Chern T, Doeff MM. Nanoscale LiFePO4 and Li4Ti5O12 for high rate Li-ion batteries. J Electrochem Soc. 2009;156:A1041.

    Article  CAS  Google Scholar 

  6. Zaghib K, Dontigny M, Cuerfi A, Charest P, Rodrigues I, Mauger A, Julien CM. Safe and fast-charging Li-ion battery with long shelf life for power applications. J Power Sources. 2011;196(8):3949.

    Article  CAS  Google Scholar 

  7. Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144(4):1188.

    Article  CAS  Google Scholar 

  8. Prosini PP, Lisi M, Zane D, Pasquali M. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics. 2002;148(1–2):45.

    Article  CAS  Google Scholar 

  9. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc. 2005;152(3):A607.

    Article  CAS  Google Scholar 

  10. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M. Electroactivity of natural and synthetic triphylite. J Power Sources. 2001;97–98:503.

    Article  Google Scholar 

  11. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil JM, Pejovnik S, Jamnik J. Porous olivine composites synthesized by sol–gel technique. J Power Sources. 2006;153(2):274.

    Article  CAS  Google Scholar 

  12. Delacourt C, Poizot P, Levasseur S, Masquelier C. Size effects on carbon-free LiFePO4 powders. Electrochem Solid-State Lett. 2006;9(7):A352.

    Article  CAS  Google Scholar 

  13. Nan CY, Lu J, Chen C, Peng Q, Li YD. Solvothermal synthesis of lithium iron phosphate nanoplates. J Mater Chem. 2011;21(27):9994.

    Article  CAS  Google Scholar 

  14. Kong F, Kostecki R, Nadeau G, Song X, Zaghib K, Kinoshita K, McLarnon F. In situ studies of SEI formation. J Power Sources. 2001;97–98:58.

    Article  Google Scholar 

  15. Zheng T, Reimers JN, Dahn JR. Effect of turbostratic disorder in graphite carbon hosts on the intercalation of lithium. Phys Rev. 1995;B51(2):734.

    Article  Google Scholar 

  16. Aurbach D, Markovsky B, Shechter A, Ein-Eli Y, Cohen H. A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures. J Electrochem Soc. 1996;143(12):3809.

    Article  CAS  Google Scholar 

  17. Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochem Acta. 2002;47(9):1423.

    Article  CAS  Google Scholar 

  18. Zhang SSXuK, Allen JL, Jow TR. Effect of propylene carbonate oil on the low temperature performance of Li-ion cells. J Power Sources. 2002;110:216.

    Article  CAS  Google Scholar 

  19. Smart MC, Ratnakumar BV, Surampudi S, Wang Y, Zhang X, Greenbaum SG, Hightower A, Ahn CC, Fultz B. Irreversible capacities of graphite in low-temperature electrolytes for lithium-ion batteries. J Electrochem Soc. 1999;146(11):3963.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the State Basic Research Development Program of China (No. 2009CB220100), the Ministry of Science and Technology (MOST) of China, US-China Collaboration on Cutting-Edge Technology Development of Electric Vehicles(No.2010DFA72760), the National Natural Science Foundation of China (Nos. 50901009 and 51271029), and the Fundamental Research Funds for the Central Universities (No. 12QNJJ013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, LZ., Wu, F., Gao, XG. et al. Development of a LiFePO4-based high power lithium secondary battery for HEVs applications. Rare Met. 39, 1457–1463 (2020). https://doi.org/10.1007/s12598-014-0316-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0316-1

Keywords

Navigation