Skip to main content
Log in

Polarization independent superconducting nanowire detector with high-detection efficiency

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The superconducting nanowire single photon detector (SNSPD) draws much attention because of its attractive performance at ultra violet, visible, and near-infrared wavelengths, and it can be widespread in quantum information technologies. However, how to increase the absorption which can dramatically increase the quantum efficiency of the SNSPD is still a top research issue. In this study, the effect of incident medium and cavity material on the optical absorptance of cavity-integrated SNSPDs was systematically investigated using finite-element method. The simulation results demonstrate that for photons polarized parallel to nanowire orientation, even though the maximum absorptance of the nanowire is insensitive to cavity material, it does increase when the refractive index of incident medium decreases. For perpendicularly polarized photons, both incident medium and cavity material play significant roles, and the absorptance curves get closer to the parallel case as the refractive index of cavity material increases. Based on these results, two cavity-integrated SNSPDs with front-illumination structure which can enhance the absorptance for both parallel and perpendicular photons are proposed. Finally, a design to realize polarization-independent SNSPDs with high absorptance is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gol’tsman, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R. Picosecond superconducting single-photon optical detector. Appl Phys Lett. 2001;79(6):705.

    Article  Google Scholar 

  2. Dorenbos, Reiger EM, Perinetti U, Zwiller V, Zijlstra T, Klapwijk TM. Low noise superconducting single photon detectors on silicon. Appl Phys Lett. 2008;93(13):131101.

  3. Najafi, Marsili F, Dauler E, Molnar RJ, Berggren KK. Timing performance of 30-nm-wide superconducting nanowire avalanche pho-todetectors. Appl Phys Lett. 2012;100(15):152602.

  4. Pearlman A, Cross A, Slysz W, Zhang J, Verevkin A, Currie M, Korneev A, Kouminov P, Smirnov K, Voronov B, Gol’tsman G, Sobolewski R. Gigahertz counting rates of NbN single-photon detectors for quantum communications. IEEE Trans Appl Supercond. 2005;15(2):579.

    Article  Google Scholar 

  5. You LX, Yang XY, He YH, Zhang WX, Liu DK, Zhang WJ, Zhang L, Zhang L, Liu XY, Chen SJ, Wang Z, Xie XM. Jitter analysis of a superconducting nanowire single photon detector. AIP Adv. 2013;3(7):072135.

    Article  Google Scholar 

  6. Anant V, Kerman AJ, Dauler EA, Yang JKW, Rosfjord KM, Berggren KK. Optical properties of superconducting nanowire single-photon detectors. Opt Express. 2008;16(14):10750.

    Article  Google Scholar 

  7. Knill E, Laflamme R, Milburn GJ. A scheme for efficient quantum computation with linear optics. Nature. 2001;409(6816):46.

    Article  Google Scholar 

  8. Li TF, You Jq, Liu JS, Li ZJ. Decoherence of qubits: results beyond Markovian approximation. Chin Phys B. 2009;18(2):430.

    Article  Google Scholar 

  9. Takesue H, Nam SW, Zhang Q, Hadfield RH, Honjo T, Tamaki K, Yamamoto Y. Quantum key distribution over 40 dB channel loss using superconducting single-photon detector. Nat Photonics. 2007;1(6):343.

    Article  Google Scholar 

  10. Poppe A, Fedrizzi A, Ursin R, Bohm H, Lorunser T, Maurhardt O, Peev M, Suda M, Kurtsiefer C, Weinfurter H, Jennewein T, Zeilinger A. Practical quantum key distribution with polarization entangled photons. Opt Express. 2004;12(16):3865.

    Article  Google Scholar 

  11. Cabello A, Rossi A, Vallone G, De Martini F, Mataloni P. Proposed bell experiment with genuine energy-time entanglement. Phys Rev Lett. 2009;102(4):040401.

    Article  Google Scholar 

  12. Verma VB, Marsili F, Harrington S, Lita AE, Mirin RP, Nam SW. A three-dimensional, polarization-insensitive superconducting nanowire avalanche photodetector. Appl Phys Lett. 2012;101(25):251114.

    Article  Google Scholar 

  13. Chen S, Guan WM, Zhang KH, Tan ZL, Xie M. Experiment and finite element method analysis mass erosion and transfer of Ag/La2NiO4-based electrical contacts during operation. Rare Met. 2013;32(1):1.

    Article  Google Scholar 

  14. Miller AJ, Lita AE, Calkins B, Vayshenker I, Gruber SM, Nam SW. Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. Opt Express. 2008;19(10):9102.

    Article  Google Scholar 

  15. Marsili F, Verma VB, Stern JA, Harrington S, Lita AE, Gerrits T, Vayshenker I, Baek B, Shaw MD, Mirin RP, Nam SW. Detecting single infrared photons with 93 % system efficiency. Nat Photonics. 2013;7(3):210.

    Article  Google Scholar 

  16. Luo LM, Lu ZL, Li H, Luo GN, Zan X, Wu YC. Current status and development trend on rare earth modified tungsten alloys. Chin J Rare Met. 2013;37(6):993.

    Google Scholar 

  17. Pernice W, Schuck C, Minaeva O, Li M, Goltsman GN, Sergienko AV, Tang HX. High speed and high efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat Commun. 2012;3:1325.

    Article  Google Scholar 

  18. Rosfjord KM, Yang JK, Dauler EA, Kerman AJ, Anaut V, Voronov BM, Gll’tsman GN, Berggren KK. Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt Express. 2006;14(2):527.

    Article  Google Scholar 

  19. Baek B, Stern JA, Nam SW. Superconducting nanowire single-photon detector in an optical cavity for front-side illumination. Appl Phys Lett. 2009;95(19):191110.

    Article  Google Scholar 

  20. Tanner MG, Natarajan CM, Pottapenjara VK, OConnor JA, Warburton RJ, Hadfield RH, Baek B, Nam S, Dorenbos SN, Bermúdez Ureña E, Zijlstra T, Klapwijk TM, Zwiller V. Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon. Appl Phys Lett. 2010;96(22):221109.

    Article  Google Scholar 

  21. Shigehito M, Yamashita T, Fujiwara M, Sasaki M, Zhen W. Characterization of coupling efficiency and absorption coefficient for fiber-coupled SNSPD with an optical cavity. IEEE Trans Appl Supercond. 2011;21(3):332.

    Article  Google Scholar 

  22. Milostnaya I, Korneev A, Rubtsova I, Seleznev V, Minaeva O, Chulkova G, Okunev O, Voronov B, Smirnov K, Gol’tsman G, Slysz W, Wegrzecki M, Guziewicz M, Bar J, Gorska M, Pearlman A, Kitaygorsky J, Cross A, Sobolewski R. Superconducting single-photon detectors designed for operation at 1.55-um telecommunication wavelength. J Phys Conf Ser. 2006;43(1):1334.

    Article  Google Scholar 

  23. Shigehito M, Yamashita T, Terai H, Wang Z. High performance fiber-coupled NbTiN supercondcting nanowire single photon detectors with Gifford-McMahon cryocoole. Opt Express. 2013;21(8):10208–14.

    Article  Google Scholar 

  24. Landsberger LM, Tiller WA. Refractive index, relaxation times and the viscoelastic model in dry-grown SiO2 films on Si. Appl Phys Lett. 1987;51(18):1416.

    Article  Google Scholar 

  25. Csete M, Sipos Á, Najafi F, Xiaolong H, Berggren KK. Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors. Appl Opt. 2011;50(31):5949.

    Article  Google Scholar 

  26. Jahanmiri Nejad S, Gaggero A, Marsili1 F, Mattioli F, Leoni R, Bitauld D, Sahin D, Hamhuis GJ, Nötzel R, Sanjines R, Fiore A. Nanowire superconducting single-photon detectors integrated with optical microcavities based on GaAs substrates. In: 2011 Conference on and 12th European Quantum Electronics Conference. IEEE, 2011, 1–1.

  27. Akiyama S, Grawert FJ, Liu J, Wada K, Celler GK, Kimerling LC, Kaertner FX. Fabrication of highly reflecting epitaxy-ready Si-SiO2 Bragg reflectors. IEEE Photonics Technol Lett. 2005;17(7):1456.

    Article  Google Scholar 

  28. Dorenbos SN, Reiger EM, Akopian N, Perinetti U, Zwiller V, Zijlstra T, Klapwijk TM. Superconducting single photon detectors with minimized polarization dependence. Appl Phys Lett. 2008;93(16):161102.

    Article  Google Scholar 

  29. Henrich D, Rehm L, Dörner S, Hofherr M, Il’in K, Semenov A, Siegel M. Detection efficiency of a spiral-nanowire superconducting single-photon detector. IEEE Trans Appl Supercond. 2013;23(3):2200405.1.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the China State Key Program for Basic Research (No. 2011CBA00304), Tsinghua University Initiative Scientific Research Program (No. 2010Z01010), and the National Natural Science Foundation of China (Nos. 61106121 and 61174084). The authors thank Qiang Zhou, Hu Zhao, Hao Li, Qing-Ya Zhang, Gang Li, Geng-Fang He, and Qi-Chun Liu for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, HY., Cai, H., Cheng, RS. et al. Polarization independent superconducting nanowire detector with high-detection efficiency. Rare Met. 34, 71–76 (2015). https://doi.org/10.1007/s12598-014-0298-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0298-z

Keywords

Navigation