Skip to main content
Log in

Preparation of luminescent polystyrene microspheres via surface-modified route with rare earth (Eu3+ and Tb3+) complexes linked to 2,2′-bipyridine

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Luminescent polystyrene microspheres were easily fabricated from poly (styrene-co-methacrylic acid) and aqueous RE(III) chloride solution (RE=Eu, Tb) in the presence of 2,2′-bipyridine as second ligand. The negative charges of carboxyl groups on the surface of microspheres coordinated with rare earth ions at first, such as complexes covalently linked to 2,2′-bipyridine, resulting in strong photoluminescence. Various methods, including transmission electron microscope (TEM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and fluorescence spectrophotometer, were used to characterize the resultant polystyrene composite microspheres. This work highlights the idea that it is facile to synthesis luminescent microspheres by surface-modified method directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Binnemans K. Lanthanide-based luminescent hybrid materials. Chem Rev. 2009;109(9):4283.

    Article  Google Scholar 

  2. Li M, Zhang P, Li J, Zhou J, Sinitskii A, Abramova V, Klimonsky SO, Tretyakov YD. Directional emission from rare earth ions in inverse photonic crystals. Appl Phys B. 2007;89(2–3):251.

    Article  Google Scholar 

  3. Pietraszkiewicz M, Mal S, Pietraszkiewicz O. Novel, highly photoluminescent Eu(III) and Tb(III) tetrazolate-2-pyridine-1-oxide complexes. Opt Mater. 2012;34(9):1507.

    Article  Google Scholar 

  4. Buenzli J-CG. Lanthanide luminescence for biomedical analyses and imaging. Chem Rev. 2010;110(5):2729.

    Article  Google Scholar 

  5. Elbanowski M, Mkowska B. The lanthanides as luminescent probes in investigations of biochemical systems. J Photochem Photobiol A. 1996;99(2–3):85.

    Google Scholar 

  6. Huhtinen P, Kivela M, Kuronen O, Hagren V, Takalo H, Tenhu H, Lovgren T, Harma H. Synthesis, characterization, and application of Eu(III), Tb(III), Sm(III), and Dy(III) lanthanide chelate nanoparticle labels. Anal Chem. 2005;77(8):2643.

    Article  Google Scholar 

  7. Huhtinen P, Kivela M, Soukka T, Tenhu H, Lovgren T, Harma H. Preparation, characterisation and application of europium(III) chelate-dyed polystyrene-acrylic acid nanoparticle labels. Anal Chim Acta. 2008;630(2):211.

    Article  Google Scholar 

  8. Li Q, Li T, Wu J. Luminescence of europium(III) and terbium(III) complexes incorporated in poly(vinyl pyrrolidone) matrix. J Phys Chem B. 2001;105(49):12293.

    Article  Google Scholar 

  9. Yan B, Zhang H, Wang S, Ni J. Luminescence properties of rare-earth (Eu3+ and Tb3+) complexes with paraaminobenzoic acid and 1,10-phenanthroline incorporated into a silica matrix by sol–gel method. Mater Res Bull. 1998;33(10):1517.

    Article  Google Scholar 

  10. Lee CI, Lim JS, Kim SH, Suh DH. Synthesis and luminescent properties of a novel Eu-containing nanoparticle. Polymer. 2006;47(15):5253.

    Article  Google Scholar 

  11. Li XH, Yang TL, Huo LN. Synthesis, characterization of chiral Eu(III) complexes and study of chiral fluorescence probe to ct-DNA. Chin J Rare Met. 2013;37(1):97.

    Google Scholar 

  12. Flores M, Caldino U, Cordoba G, Arroyo R. Luminescence enhancement of Eu3+-doped poly(acrylic acid) using 1,10-phenanthroline as antenna ligand. Opt Mater. 2004;27(3):635.

    Article  Google Scholar 

  13. Ye YX, Wei LH, Sheng WC, Chen M, Hua YQ. Luminescent properties of a new Nd3+-doped complex with two different carboxylic acids and pyridine derivative. Rare Met. 2013;32(5):490.

    Article  Google Scholar 

  14. Sheng K, Yan B, Qiao XF, Guo L. Rare earth (Eu/Tb)/phthalic acid functionalized inorganic Si-O/organic polymeric hybrids: chemically bonded fabrication and photophysical property. J Photochem Photobiol A. 2010;210(1):36.

    Article  Google Scholar 

  15. Latva M, Takalo H, Mukkala V-M, Matachescu C, Rodríguez-Ubis JC, Kankare J. Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J Lumin. 1997;75(2):149.

    Article  Google Scholar 

  16. Yu XJ, Su QD. Photoacoustic and luminescence properties study on energy transfer and relaxation processes of Tb(III) complexes with benzoic acid. J Photochem Photobiol A. 2003;155(1–3):73.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Fundation of China (No.50873085).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Zhang or Teruhisa Ohno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, ZX., Zhang, QT., Liu, JL. et al. Preparation of luminescent polystyrene microspheres via surface-modified route with rare earth (Eu3+ and Tb3+) complexes linked to 2,2′-bipyridine. Rare Met. 34, 590–594 (2015). https://doi.org/10.1007/s12598-014-0263-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0263-x

Keywords

Navigation