Skip to main content
Log in

Electrical switching in cadmium ferrite with different rare-earth ions (Sm3+, Y3+, and La3+)

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The cadmium ferrite and 5 % rare-earth ions (Sm3+, Y3+, and La3+) added Cd ferrites were synthesized by oxalate co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscope (SEM) techniques. All ferrite samples under investigation exhibit current-controlled negative resistance type IE characteristics at room temperature. The required electrical-switching field in cadmium ferrite is higher than that for 5 % Sm3+, Y3+, and La3+ added cadmium ferrites. The 5 % addition of Sm3+, Y3+, and La3+ in cadmium ferrite is found to decrease the grain size in this ferrite. This decrement in the grain size makes the required switching field to decrease in cadmium ferrite. No aging effect for electrical switching is observed in these ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gadkari AB, Shinde TJ, Vasambekar PN. Effect of Sm3+ ion addition on gas sensing properties of Mg1− x Cd x Fe2O4 system. Sensor Actuator B. 2013;178(1):34.

    Article  Google Scholar 

  2. Gadkari AB, Shinde TJ, Vasambekar PN. Electrical and humidity sensing study of nanocrtsyallite Mg–Cd ferrites. Sens Transducer J. 2012;137(2):145.

    Google Scholar 

  3. Vasambekar PN, Kolekar CB, Vaingankar AS. Electrical switching in Cd x Co1−x Fe2−y Cr y O4 system. Mater Res Bull. 1999;34(6):863.

    Article  Google Scholar 

  4. Desai R, Mehta RV, Upadhyay RV, Gupta A, Praneet A, Rao KV. Bulk magnetic properties of CdFe2O4 in nano regime. J Bull Mater Sci. 2007;30(3):197.

    Article  Google Scholar 

  5. Shobana MK, Sankar S. Synthesis and characterization of Ni x Co1−x Fe2O4 nanoparticles. J Magn Magn Mater. 2009;321(19):3132.

    Article  Google Scholar 

  6. Popescu SA, Vlazan P, Notingher PV, Novaconi S, Grozescu I, Bucur A, Sfirloaga P. Synthesis of Ni ferrite powders by co-precipitation and hydrothermal methods. J Optoelectron Adv Mater. 2011;13(3):260.

    Google Scholar 

  7. Gaikwad RS, Chae SY, Mane RS, Han S-H, Joo O-S. Cobalt ferrite nanocrystallites for sustainable hydrogen production application. Int J Electrochem. 2011;2011:1.

    Article  Google Scholar 

  8. Gadkari AB, Shinde TJ, Vasambekar PN. Influence of rare-earth ions on structural and magnetic properties of cadmium ferrites. Rare Met. 2010;29(2):168.

    Article  Google Scholar 

  9. Yamashiro T. Electrical switching and memory phenomena in CuFe2O4. Jpn J Appl Phys. 1973;12(1):148.

    Article  Google Scholar 

  10. Vaingankar AS, Kamble PN, Kulkarani VR. Electrical switching in mixed Cd x Cu1−x ·Fe2O4. Ind J Pure Appl Phys. 1990;28(9):508.

    Google Scholar 

  11. Sagare MS, Vaingankar MS, Kulkarni SG. Electric field dependent switching in Li–Cd ferrites. J Phys IV. 1997;07(C1):157.

    Google Scholar 

  12. Saija KG, Joshi US, Lakhani VK, Modi KB. CCNR type high filed instability in Ti4+ substituted Mn–Zn ferrites. J Phys D. 2009;42(16):165402.

    Article  Google Scholar 

  13. Vasoya NH, Lakhani VK, Sharma PU, Modi KB, Kumar R. Joshi HH. Study on the electrical and dielectric behavior of Zn-substituted cobalt ferrialuminates. J Phys. 2006;18(34):8063.

    Google Scholar 

  14. Pandya MP, Modi KB, Joshi HH. Study of conduction mechanism in aluminum and magnesium co-substituted lithium ferrite. J Mater Sci. 2005;40(19):5223.

    Article  Google Scholar 

  15. Kaplan T, Bullock DC, Adler D, Epstein DJ. Thermally induced negative resistance in Si doped YIG. Appl Phys Lett. 1972;20(11):439.

    Article  Google Scholar 

  16. Hisatake K, Nakayama K, Ohta K. Note on electrical break-down phenomenon in ferrites. Jpn J Appl Phys. 1973;12(7):1116.

    Article  Google Scholar 

  17. Saxena NK, Kumar N, Pourush PKS. On switching behavior of ferrite substrate with magnetostatic and spin wave exchange term. Ind J Phys. 2010;84(9):1193.

    Article  Google Scholar 

  18. Hu W, Qin N, Wu GH, Lin YT, Li SW, Bao DH. Opportunity of spinel ferrite materials in non volatile memory devices application based on resistive switching performance. J Am Chem Soc. 2012;134(36):15648.

    Google Scholar 

  19. Chen G, Cheng S, Pan F. Improved resistive switching stability of Pt/ZnO/CoO x /ZnO/Pt structure for nonvolatile memory devices. Rare Met. 2013;32(6):544.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Major Research Project of University Grants Commission, New Delhi, India (No. F.No. 36-212/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev P. Dalawai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalawai, S.P., Gadkari, A.B. & Vasambekar, P.N. Electrical switching in cadmium ferrite with different rare-earth ions (Sm3+, Y3+, and La3+). Rare Met. 34, 133–136 (2015). https://doi.org/10.1007/s12598-014-0235-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0235-1

Keywords

Navigation