Skip to main content
Log in

Selective oxidation of methane and carbon deposition over Fe2O3/Ce1−x Zr x O2 oxides

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A series of Fe2O3/Al2O3, Fe2O3/CeO2, Ce0.7Zr0.3O2, and Fe2O3/Ce1−x Zr x O2 (x = 0.1–0.4) oxides was prepared and their physicochemical features were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), and H2-temperature-programmed reduction (H2-TPR) techniques. The gas–solid reactions between these oxides and methane for syngas generation as well as the catalytic performance for selective oxidation of carbon deposition in O2-enriched atmosphere were investigated in detail. The results show that the samples with the presence of Fe2O3 show much higher activity for methane oxidation compared with the Ce0.7Zr0.3O2 solid solution, while the CeO2-contained samples represent higher CO selectively in methane oxidation than the Fe2O3/Al2O3 sample. This suggests that the iron species should be the active sites for methane activation, and the cerium oxides provide the oxygen source for the selective oxidation of the activated methane to syngas during the reaction between methane and Fe2O3/Ce0.7Zr0.3O2. For the oxidation process of the carbon deposition, the CeO2-containing samples show much higher CO selectivity than the Fe2O3/Al2O3 sample, which indicates that the cerium species should play a very important role in catalyzing the carbon selective oxidation to CO. The presence of the Ce–Zr–O solid solution could induce the growth direction of the carbon filament, resulting in a loose contact between the carbon filament and the catalyst. This results in abundant exposed active sites for catalyzing carbon oxidation, strongly improving the oxidation rate of the carbon deposition over this sample. In addition, the Fe2O3/Ce0.7Zr0.3O2 also represents much higher selectivity (ca. 97 %) for the conversion of carbon to CO than the Fe2O3/CeO2 sample, which can be attributed to the higher concentration of reduced cerium sites on this sample. The increase of the Zr content in the Fe2O3/Ce1−x Zr x O2 samples could improve the reactivity of the materials for methane oxidation, but it also reduces the selectivity for CO formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thursfield A, Murugan A, Franca R, Metcalfe IS. Chemical looping and oxygen permeable ceramic membranes for hydrogen production-a review. Energy Environ Sci. 2012;5(6):7421.

    Article  Google Scholar 

  2. Li KZ, Wang H, Wei YG, Ao XQ, Liu MC. Partial oxidation of methane to synthesis gas using lattice oxygen. Prog Chem. 2009;20(9):1306.

    Google Scholar 

  3. Pantu P, Kim K, Gavalas GR. Methane partial oxidation on Pt/CeO2–ZrO2 in the absence of gaseous oxygen. Appl Catal A. 2000;193(1–2):203.

    Article  Google Scholar 

  4. Dai XP, Li RJ, Yu CC, Hao ZP. Unsteady-state direct partial oxidation of methane to synthesis gas in a fixed-bed reactor using AFeO3 (A = La, Nd, Eu) perovskite-type oxides as oxygen storage. J Phys Chem B. 2006;110(45):22525.

    Article  Google Scholar 

  5. Takenaka S, Tomikubo Y, Kato E, Otsuka K. Sequential production of H2 and CO over supported Ni catalysts. Fuel. 2004;83(1):47.

    Article  Google Scholar 

  6. Zhang T, Amiridis MD. Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts. Appl Catal A. 1998;167(2):161.

    Article  Google Scholar 

  7. Aiello R, Fiscus JE, Zur Loye HC, Amiridis MD. Hydrogen production via the direct cracking of methane over Ni/SiO2 catalyst deactivation and regeneration. Appl Catal A. 2004;192(2):227.

    Article  Google Scholar 

  8. Otsuka K, Takenaka S, Ohtsuki H. Production of pure hydrogen by cyclic decomposition of methane and oxidative elimination of carbon nanofibers on supported-Ni-based catalysts. Appl Catal A. 2004;273(1–2):113.

    Article  Google Scholar 

  9. Li J, Smith KJ. Methane decomposition and catalyst regeneration in a cyclic mode over supported Co and Ni catalysts. Appl Catal A. 2008;349(1–2):116.

    Article  Google Scholar 

  10. Odier E, Schuurman Y, Mirodatos C. Non-stationary catalytic cracking of methane over ceria-based catalysts: mechanistic approach and catalyst optimization. Catal Today. 2007;127(1–4):230.

    Article  Google Scholar 

  11. Fathi M, Bjorgum E, Viig Tm Rokstad OA. Partial oxidation of methane to synthesis gas: elimination of gas phase oxygen. Catal Today. 2000;63(2–4):489.

    Article  Google Scholar 

  12. Dai XP, Wu Q, Li RJ, Yu CC, Hao ZP. Hydrogen production from a combination of the water-gas shift and redox cycle process of methane partial oxidation via lattice oxygen over LaFeO3 perovskite catalyst. J Phys Chem B. 2006;110(51):25856.

    Article  Google Scholar 

  13. Li KZ, Wang H, Wei YG, Yan DX. Selective oxidation of carbon using iron-modified cerium oxide. J Phys Chem C. 2009;113(34):15288.

    Article  Google Scholar 

  14. Gu ZH, Li KZ, Wang H, Wei YG. Syngas production from methane over CeO2–Fe2O3 mixed oxides using a chemical-looping method. Kinet Catal. 2013;54(3):340.

    Article  Google Scholar 

  15. Atribak I, Azambre B, Bueno-Lopez A, Garcia–Garcia A. NO x adsorption/desorption processes over Ce0.76Zr0.24O2 and their influence on Desoot activity: effect of the catalyst calcination temperature. Top Catal. 2009;52(13–20):2092.

    Article  Google Scholar 

  16. Magnacca G, Cerrato G, Morterra C, Signoretto M, Somma F, Pinna F. Structural and surface characterization of pure and sulfated iron oxides. Chem Mater. 2003;15(3):675.

    Article  Google Scholar 

  17. Atribak I, Buenolopez A, Garciagarcia A. Combined removal of diesel soot particulates and NO x over CeO2–ZrO2 mixed oxides. J Catal. 2008;259(1):123.

    Article  Google Scholar 

  18. Qiao D, Lu G, Liu X, Guo Y, Wang Y, Guo Y. Preparation of Ce1−x Fe x O2 solid solution and its catalytic performance for oxidation of CH4 and CO. J Mater Sci. 2011;46(10):3500.

    Article  Google Scholar 

  19. Laguna OH, Centeno MA, Boutonnet M. Fe-doped ceria solids synthesized by the microemulsion method for cooxidation reactions. Appl Catal B. 2011;106(3–4):621.

    Article  Google Scholar 

  20. Li KZ, Wang H, Wei Y, Yan DX. Transformation of methane into synthesis gas using the redox property of Ce–Fe mixed oxides: effect of calcination temperature. Int J Hydrogen Energy. 2011;36(5):3471.

    Article  Google Scholar 

  21. Li KZ, Haneda M, Ozawa M. Enhancement of reducibility and oxygen storage capacity (OSC of Ce–Fe mixed oxides by repetitive redox treatment. Chem Lett. 2012;41(9):837.

    Article  Google Scholar 

  22. Sadykov VA, Kumetsova TG, Alikina GM. Ceria-based fluorite-like oxide solid solutions as catalysts of methane selective oxidation into syngas by the lattice oxygen: synthesis, characterization and performance. Catal Today. 2004;93–95(SI):45.

    Article  Google Scholar 

  23. Hu ZY, Yang Y, Sun B, Zhang P, Wang WC, Shao XH. Dissociations of O2 molecules on ultrathin Pb(111) films: first-principles plane wave calculations. Chin Phys B. 2012;21(1):016801.

    Article  Google Scholar 

  24. Wei YG, Wang H, Li KZ, Zhu X, Du YP. Preparation and characterization of Ce1−x Ni x O2 as oxygen carrier for selective oxidation methane to syngas in absence of gaseous oxygen. J Rare Earths. 2010;28(SI):357.

    Article  Google Scholar 

  25. Li KZ, Wang H, Wei YG, Yan DX. Direct conversion of methane to synthesis gas using lattice oxygen of CeO2–Fe2O3 complex oxides. Chem Eng J. 2010;156(3):512.

    Article  Google Scholar 

  26. Li KZ, Wang H, Wei YG, Yan DX. Syngas production from methane and air via a redox process using Ce–Fe mixed oxides as oxygen carriers. Appl Catal B. 2010;97(3–4):361.

    Article  Google Scholar 

  27. Li KZ, Wang H, Wei YG, Yan DX. Partial oxidation of methane to syngas with air by lattice oxygen transfer over ZrO2-modified Ce–Fe mixed oxides. Chem Eng J. 2011;173(2):574.

    Article  Google Scholar 

  28. Takenaka S, Nomura K, Hanaizumi N. Storage and formation of pure hydrogen mediated by the redox of modified iron oxides. Appl Catal A. 2005;282(1–2):333.

    Article  Google Scholar 

  29. Gemmi M, Merlini M, Cornaro U, Ghisletti D, Artioli G. In situ simultaneous synchrotron powder diffraction and mass spectrometry study of methane anaerobic combustion on iron-oxide-based oxygen carrier. J Appl Crystallogr. 2005;38:353.

    Article  Google Scholar 

  30. Otsuka K, Wang Y, Sunada E, Yamanaka I. Direct partial oxidation of methane to synthesis gas by cerium oxide. J Catal. 1998;175(2):152.

    Article  Google Scholar 

  31. Otsuka K, Wang Y, Nakamura M. Direct conversion of methane to synthesis gas through gas-solid reaction using CeO2–ZrO2 solid solution at moderate temperature. Appl Catal A. 1999;183(2):317.

    Article  Google Scholar 

  32. Takenaka S, Serizawa M, Otsuka K. Formation of filamentous carbons over supported Fe catalysts through methane decomposition. J Catal. 2004;222(2):520.

    Article  Google Scholar 

  33. Cheng JS, Wang QL, Wang H, Dar YM. Preparation and catalytic activity of CO-resistant catalyst core-shell Au@Pt/C for methanol oxidation. Rare Met. 2012;31(5):446.

    Article  Google Scholar 

  34. Kašpar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catal Today. 1999;50(2):285.

    Article  Google Scholar 

  35. Rocchini E, Trovarelli A, Llorca J, Graham GW. Relationships between structural/morphological modifications and oxygen storage-redox behavior of silica-dope ceria. J Catal. 2000;194(2):461.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 51004060, 51104074, and 51174105) and the Natural Science Foundation of Yunnan Province (No. 2010ZC018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kong-Zhai Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sang, XL., Li, KZ., Wang, H. et al. Selective oxidation of methane and carbon deposition over Fe2O3/Ce1−x Zr x O2 oxides. Rare Met. 33, 230–238 (2014). https://doi.org/10.1007/s12598-013-0173-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0173-3

Keywords

Navigation