Skip to main content
Log in

Synthesis of ultralong Si3N4 nanowires by a simple thermal evaporation method

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Large-scale vapor–solid synthesis of ultralong silicon nitride (Si3N4) nanowires was achieved by using simple thermal evaporation of mixture powders of active carbon and monoxide silicon. The products were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The results suggest that the silicon nitride nanowires have a smooth surface, with lengths of up to several hundreds of microns and diameters of 100–300 nm. A detailed study of both the chemical and structural composition was performed. Such ultralong silicon nitride nanowires demonstrate potential applications as materials for constructing nanoscale devices and as reinforcement in advanced composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jeong HG, Hiraga K, Mabuchi M, Higashi K. Effects of addition of magnesium on interface structure and high-strain-rate superplasticity in Si3N4-reinforced Al-alloy composites. Acta Mater. 1998;46(17):6009.

    Article  CAS  Google Scholar 

  2. Claussen N, Beyer P, Janssen R, May M, Selchert T, Yang JF, Ohji T, Kanzaki S, Yamakawa A. Squeeze cast β-Si3N4-Al composites. Adv Mater. 2002;4(3):117.

    Article  CAS  Google Scholar 

  3. Zhang Z, Wong LM, Guan H, Wang XJ, Wang JL, Wang SJ, Chen HY, Wu T. Self-assembled shape- and orientation-controlled synthesis of nanoscale Cu3Si triangles, squares, and wires. Nano Lett. 2008;8(10):3205.

    Article  CAS  Google Scholar 

  4. Dela JL, Pech ML. Wetting behavior of Al–Si–Mg alloys on Si3N4/Si substrates: optimization of processing parameters. Appl Phys. 2008;91(3):545.

    Article  Google Scholar 

  5. Lee KB, Kwon H. Fabrication and characteristics of AA6061/Si3N4p composite by the pressureless infiltration technique. Metall Mater Trans. 1999;30(11):2999.

    Article  Google Scholar 

  6. Peng LM, Han KS, Cao JW, Noda K. Fabrication and mechanical properties of high-volume-fraction Si3N4–Al-based composites by squeeze infiltration casting. J Mater Sci Lett. 2003;22(4):279.

    Article  CAS  Google Scholar 

  7. Du D, Wang MH, Cai J, Tao Y, Tu HY, Zhang AD. Immobilization of acetylcholinesterase based on the controllable adsorption of carbon nanotubes onto an alkanethiol monolayer for carbaryl sensing. Analyst. 2008;133(12):1790.

    Article  CAS  Google Scholar 

  8. Bao XQ, Guo XY, Guo JC, Gao XX. Effect of Ga addition on the magnetic properties and microstructure of nanocrystalline Nd12.3Fe81.7B6.0 ribbons. Rare Met. 2011;30(5):447.

    Article  CAS  Google Scholar 

  9. Hu JQ, Bando Y, Liu ZW, Xu FF, Sekiguchi T, Zhan JH. Uniform micro-sized α- and β-Si3N4 thin ribbons grown by a high-temperature thermal-decomposition/nitridation route. J Chem Eur. 2004;10(2):554.

    Article  CAS  Google Scholar 

  10. Zanatta AR, Nunes LAO. Green photoluminescence from Er-containing amorphous SiN thin films. Appl Phys Lett. 1998;72:3127.

    Article  CAS  Google Scholar 

  11. Munakata F, Mastsuo K, Furuya K, Akimune Y. Optical properties of β-Si3N4 single crystals grown from a Si melt in N2. Appl Phys Lett. 1999;74(23):3498.

    Article  CAS  Google Scholar 

  12. Uo QM, Li DF, Peng HJ, Guo SL, Hu J, Du P. Nucleation mechanisms of dynamic recrystallization in Inconel 625 superalloy deformed with different strain rates. Rare Met. 2012;31(3):215.

    Article  Google Scholar 

  13. Zhou XT, Wang N, Lai HL, Peng HY, Bello I, Wong NB, Lee CS, Lee ST. β-SiC nanorods synthesized by hot filament chemical vapor deposition. Appl Phys Lett. 1999;74(26):3942.

    Article  CAS  Google Scholar 

  14. Wang WY, Niu XL, Gao YC, Zhu YY, Li G, Lu HJ, Tang MS. One chiral and two achiral 3-D coordination polymers constructed by 2-phenyl imidazole dicarboxylate. Cryst Growth Des. 2010;10(9):4050.

    Article  CAS  Google Scholar 

  15. Wagner RS, Treuting RG. Morphology and growth mechanism of silicon ribbons. J Appl Phys. 1961;32(11):2490.

    Article  CAS  Google Scholar 

  16. Yang PD, Lieber CM. Nanostructured high-temperature superconductors: creation of strong-pinning columnar defects in nanorod/superconductor composites. J Mater Res. 1997;12(11):2981.

    Article  CAS  Google Scholar 

  17. Mizuhara Y, Noguchi M, Ishihara T, Takita Y. Preparation of silicon nitride whiskers from diatomaceous earth: I. Reaction conditions. J Am Ceram Soc. 1995;78(1):109.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Key Program of the National Natural Science Foundation of China (No. 19934003), the Grand Program of Natural Science Research of Anhui Education Department (No. ZD2007003-1), the Natural Science Research Program of Universities and Colleges of Anhui Province (No. KJ2008A19ZC), and the Opening Program of Cultivating Base of Anhui Key Laboratory of Spintronics and Nano-materials (No. 2012YKF10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Sheng Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, WQ., Zou, XP., Zhou, NJ. et al. Synthesis of ultralong Si3N4 nanowires by a simple thermal evaporation method. Rare Met. 32, 186–190 (2013). https://doi.org/10.1007/s12598-013-0050-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0050-0

Keywords

Navigation