Skip to main content
Log in

Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Silicon has been investigated extensively as a promising anode material for rechargeable lithium-ion batteries. Understanding the failure mechanism of silicon-based anode electrodes for lithium-ion batteries is essential to solve the problem of low coulombic efficiency and capacity fading on cycling and also to further commercialize this very new energetic material in cells. To reach this goal, the structure changes of bulk silicon particles and electrode after cycling were studied using ex-situ scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The SEM images indicated that the microstructural changes of the bulk silicon particles during cycling led to a layer rupture of the electrode and then the breakdown of the conductive network and the failure of the electrode. The result contributes to the basic understanding of the failure mechanism of a bulk silicon anode electrode for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sharma RA, Seefurth RN. Thermodynamic properties of the lithium–silicon system. J Electrochem Soc. 1976;123(12):1763.

    Article  CAS  Google Scholar 

  2. Holzapfel M, Buqa H, Scheifele W, Novak P, Petrat FM. A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion. Chem Commun. 2005;28(12):1566.

    Article  Google Scholar 

  3. Kasavajjula U, Wang C, Appleby AJ. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources. 2007;163(2):1003.

    Article  CAS  Google Scholar 

  4. Zhang WJ. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources. 2011;196(1):13.

    Article  CAS  Google Scholar 

  5. Li T, Yang JY, Lu SG. Effect of modified elastomeric binders on the electrochemical properties of silicon anodes for lithium-ion batteries. Int J Miner Metall Mater. 2012;19(8):752.

    Article  CAS  Google Scholar 

  6. Chen JB, Zhao HL, He JC, Wang J. Si/MgO composite anodes for Li-ion batteries. Rare Met. 2011;30(2):166.

    Article  CAS  Google Scholar 

  7. Li T, Qiu WH, Zhao HL, Liu JJ. Synthesis and electrochemical characterization of 5 V LiNi1/2Mn3/2O4 cathode materials by low-heating solid-state reaction. J Power Sources. 2007;174(2):515.

    Article  CAS  Google Scholar 

  8. Gao G, Liu AF, Hu ZH, Xu YY, Liu YF. Synthesis of LiFePO4/C as cathode material by a novel optimized hydrothermal method. Rare Met. 2011;30(5):433.

    Article  Google Scholar 

  9. Xia JH, Liu ZJ, Li DR, Lu ZC, Zhou SX. Effect of current collector on electrochemical performance of alloy anodes of lithium ion batteries. Rare Met. 2011;30(1):48.

    Article  CAS  Google Scholar 

  10. Wang YL, Guo M, Zhang M, Wang XD. Template-free hydrothermal synthesis of single-crystalline SnO2 nanocauliflowers and their optical properties. Rare Met. 2009;28(5):449.

    Article  CAS  Google Scholar 

  11. Zhao YJ, Wang SJ, Zhao CS, Xia DG. Synthesis and electrochemical performance of LiCoPO4 micron-rods by dispersant-aided hydrothermal method for lithium ion batteries. Rare Met. 2009;28(1):117.

    Article  Google Scholar 

  12. Lin Y, Zeng BZ, Lin YB, Li XW, Zhao GY. Electrochemical properties of carbon-coated LiFePO4 and LiFe0.98Mn0.02PO4 cathode materials synthesized by solid-state reaction. Rare Met. 2012;31(2):145.

    Article  CAS  Google Scholar 

  13. Ryu JH, Kim JW, Sung Y-E, Oh SM. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem Solid. 2004;7(10):A306.

    Article  CAS  Google Scholar 

  14. Kalnaus S, Rhodes K, Daniel C. A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery. J Power Sources. 2011;196(19):8116.

    Article  CAS  Google Scholar 

  15. Obrovac MN, Krause LJ. Reversible cycling of crystalline silicon powder. J Electrochem Soc. 2007;154(2):A103.

    Article  CAS  Google Scholar 

  16. Li J, Dahn JR. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J Electrochem Soc. 2007;154(3):A156.

    Article  CAS  Google Scholar 

  17. Zha Q. Porous electrode. In: Shijie C, editor. Kinetics of electrode process. Beijing: Science Press; 2002;345.

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51004016 and 51004017) and the National High Technology Research and Development Program of China (Nos.2012AA110102 and 2011AA11A269).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Gang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Yang, JY., Lu, SG. et al. Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries. Rare Met. 32, 299–304 (2013). https://doi.org/10.1007/s12598-013-0045-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0045-x

Keywords

Navigation