Skip to main content
Log in

Microstructural evolution of a PM TiAl alloy during heat treatment in α+γ phase field

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this study, the effect of temperatures and cooling rates of heat treatment on the microstructure of a powder metallurgy (PM) Ti-46Al-2Cr-2Nb-(B,W) (at.%) alloy was studied. Depending on the cooling rate and temperature, the different structures were obtained from the initial near-γ (NG) microstructures by heat treatment in the α+γ field. The results show that the microstructures of samples after furnace cooling (FC) consist primarily of equiaxed γ and α2 grains, with a few grains containing lamellae. Duplex microstructures consist mainly of γ grains and lamellar colonies were obtained in the quenching into another furnace at 900°C (QFC) samples. However, further increasing of the cooling rate to air cooling (AC) induces the transformation of α→α2 and results in a microstructure with equiaxed γ and α2 grains, and no lamellar colonies are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim Y.W., Progress in the understanding of gamma titanium aluminides, JOM, 1991, 43(8): 40.

    Article  CAS  Google Scholar 

  2. Takeyama M., Microstructural evolution and tensile properties of titanium-rich TiAl alloy, Mater. Sci. Eng. A, 1992, 152(1–2): 269.

    Google Scholar 

  3. Su Y.Q., Liu X.W., Luo L.S., Zhao L., Guo J.J., and Fu H.Z., Deoxidation of Ti-Al intermetallics via hydrogen treatment, Int. J. Hydrog. Energy, 2010, 35(17): 9214.

    Article  CAS  Google Scholar 

  4. Su Y.Q., Liu C., Li X.Z., Guo J.J., Li B.S., Jia J., and Fu H.Z., Microstructure selection during the directionally peritectic solidification of Ti-Al binary system, Intermetallics, 2005, 13(3–4): 267.

    Article  CAS  Google Scholar 

  5. Su Y.Q., Guo J.J., Jia J., Liu G.Z., and Liu Y., Composition control of a TiAl melt during the induction skull melting (ISM) process, J. Alloy. Compd., 2002, 334(1–2): 261.

    CAS  Google Scholar 

  6. Kim Y.W., Ordered intermetallic alloys, part III: gamma titanium aluminides, JOM, 1994, 46(7): 30.

    Article  CAS  Google Scholar 

  7. Lu X., Zhu L.P., Liu C.C., Zhang L., Wu M., and QU X.H., Fabrication of micro-fine high Nb-containing TiAl alloyed powders by fluidized bed jet milling, Rare Metals, 2012, 31(1): 1.

    Article  CAS  Google Scholar 

  8. Kim Y.W., Intermetallic alloys based on gamma titanium aluminide, JOM, 1989, 41(7): 24.

    Article  CAS  Google Scholar 

  9. Toshimitsu T., Manufacturing technology for gamma-TiAl alloy in current and future applications, Rare Metals, 2011, 30(S1): 294.

    Article  Google Scholar 

  10. Imayev R.M., Imayev V.M., Oehring M., and Appel F., Alloy design concepts for refined gamma titanium aluminide based alloys, Intermetallics, 2007, 15(4): 451.

    Article  CAS  Google Scholar 

  11. Yang S.H., Kim W.Y., and Kim M.S., Fabrication of unidirectional porous TiAl-Mn intermetallic compounds by reactive sintering using extruded powder mixtures, Intermetallics, 2003, 11(8): 849.

    Article  CAS  Google Scholar 

  12. Chu W.Y., and Thompson A.W., Effect of grain size on yield strength in TiAl, Scripta Metall., 1991, 25(3): 641.

    Article  CAS  Google Scholar 

  13. Koeppe C., Bartels C., Seege J., and Mecking H., General aspects of the thermomechanical treatment of two-phase intermetallic TiAl compounds, Metall. Mater. Trans. A, 1993, 24A(8): 1795.

    CAS  Google Scholar 

  14. Arno B., Carsten K., and Heinrich M. Microstructure and properties of Ti-48Al-2Cr after thermomechanical treatment. Materials Science and Engineering A., 1995, 192–193(1): 226.

    Google Scholar 

  15. Zhang G., Blenkinsop P.A., and Wise M.L.H., Phase transformations in HIPed Ti-48Al-2Mn-2Nb powder during heat-treatments, Intermetallics, 1996, 4(6): 447.

    Article  CAS  Google Scholar 

  16. Flower H.M., and Christodoulou J., Phase equilibria and transformations in titanium aluminides, Mater. Sci. Technol., 1999, 15(1): 45.

    Article  CAS  Google Scholar 

  17. Denquin A., and Naka S., Phase transformation mechanism involved in two phase TiAl-II: discontinuous coarsening and massive-type transformation, Acta Metall., 1996, 44(1): 353.

    CAS  Google Scholar 

  18. Kim Y.W., Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy, Acta Metall. Mater., 1992, 40(6): 1121.

    Article  CAS  Google Scholar 

  19. Aaronson H.I., Atomic mechanisms of diffusional nucleation and growth and comparisons with their counterparts in shear transformations, Metall. Mater. Trans. A, 1993, 24(2): 241.

    Article  Google Scholar 

  20. Mishin Y., and Herzig C., Dision in the Ti-Al system, Acta Metall., 2000, 48(2): 589.

    CAS  Google Scholar 

  21. Denquin A., and Naka S., Phase transformation mechanism involved in two phase TiAl-I: lamellar structure formation, Acta Metall., 1996, 44(1): 343.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, M., Zheng, L., Lang, Z. et al. Microstructural evolution of a PM TiAl alloy during heat treatment in α+γ phase field. Rare Metals 31, 424–429 (2012). https://doi.org/10.1007/s12598-012-0532-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-012-0532-5

Keywords

Navigation