Skip to main content
Log in

Phase structure and hydrogen storage properties of LaMg3.70Ni1.18 alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The phase structure and hydrogen storage properties of LaMg3.70Ni1.18 alloy were investigated. The LaMg3.70Ni1.18 alloy consists of main LaMg2Ni phase, minor La2Mg17 and LaMg3 phases. The alloy can be activated in the first hydriding/dehydriding process, and initial LaMg2Ni, La2Mg17, and LaMg3 phases transfer to LaH2.34, Mg, and Mg2Ni phases after activation. The reversible hydrogen storage capacity of the LaMg3.70Ni1.18 alloy is 2.47 wt.% at 558 K, which is higher than that of the LaMg2Ni alloy. The pressure-composition-temperature (PCT) curves display two hydriding plateaus, corresponding to the formation of MgH2 and Mg2NiH4. However, only one dehydriding plateau is observed, owing to the synergetic effect of hydrogen desorption between MgH2 and Mg2NiH4. The uptake time for hydrogen content to reach 99% of saturated state is less than 250 s, and 90% hydrogen can be released in 1200 s in the experimental conditions, showing fast kinetics in hydriding and dehydriding. The activation energies of the LaMg3.70Ni1.18 alloy are −51.5 ± 1.1 kJ/mol and −57.0 ± 0.6 kJ/mol for hydriding and dehydriding, respectively. The hydriding/dehydriding kinetics of the LaMg3.70Ni1.18 alloy is better than that of the Mg2Ni alloy, owing to the lower activation energy values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu J., Choi Y.J., Fang Z.Z., Sohn H.Y., and Ronnebro E., Hydrogen storage properties of nanosized MgH2-0.1TiH2 prepared by ultrahigh-energy-high-pressure milling, J. Am. Chem. Soc., 2009, 131: 15843.

    Article  CAS  Google Scholar 

  2. Bogdnovic B., Harwing T.H., and Spliethoff B., The development, testing and optimization of energy storage materials based on the MgH2-Mg system, Int. J. Hydrogen Energy, 1993, 18: 575.

    Article  Google Scholar 

  3. Choi Y.J., Choi J.W., Sohn H.Y., Ryu T., Hwang K.S., and Fang Z.Z., Chemical vapour synthesis of Mg-Ti nanopowder mixture as a hydrogen storage material, Int. J. Hydrogen Energy, 2009, 34: 7700.

    Article  CAS  Google Scholar 

  4. Ouyang L.Z., Yang X.S., Dong H.W., and Zhu M., Structure and hydrogen storage properties of Mg3Pr and Mg3PrNi0.1 alloy, Scripta Mater., 2009, 61: 339.

    Article  CAS  Google Scholar 

  5. Ouyang L.Z., Qin F.X., and Zhu M., The hydrogen storage behavior of Mg3La and Mg3LaNi0.1, Scripta Mater., 2006, 55: 1075.

    Article  CAS  Google Scholar 

  6. Song Y., Guo Z.X., and Yang R., Influence of selected alloying elements on the stability of magnesium dihydride for hydrogen storage applications: a first principles investigation, Phys. Rev. B, 2004, 69: Art. No. 094205.

    Google Scholar 

  7. Glage A., Ceccato R., Lonardelli I., Girardi F., Agresti F., Principi G., Molinari A., and Gialanell S., A powder metallurgy approach for the production of a MgH2-Al composite material, J. Alloys Compd., 2009, 478: 273.

    Article  CAS  Google Scholar 

  8. Tanak K., Miwa T., Sasaki K., and Kuroda K., TEM studies of nanostructure in melt-spun Mg-Ni-La alloy manifesting enhanced hydrogen desorbing kinetics, J. Alloys Compd., 2009, 478: 308.

    Article  Google Scholar 

  9. Xie D.H., Li P., Zeng C.X., Sun J.W., and Qu X.H., Effect of substitution of Nd for Mg on the hydrogen storage properties of Mg2Ni alloy, J. Alloys Compd., 2009, 478: 96.

    Article  CAS  Google Scholar 

  10. Ren H., Zhang Y., Li B., Zhao D., Guo S., and Wang X., Influence of the substitution of La for Mg on the microstructure and hydrogen storage characteristics of Mg20−x LaxNi10 (x = 0−6) alloys, Int. J. Hydrogen Energy, 2009, 34: 1429.

    Article  CAS  Google Scholar 

  11. Ouyang L.Z., Yao L., Dong H.W., Li L.Q., and Zhu M., Hydrogen storage properties of LaMg2Ni prepared by induction melting, J. Alloys Compd., 2009, 485: 507.

    Article  CAS  Google Scholar 

  12. Chio M.D., Ziggiotti A., and Baricco M., Effect of microstructure on hydrogen absorption in LaMg2Ni, Intermetallics, 2008, 16: 102.

    Article  Google Scholar 

  13. Zaluska A., Zaluski L., and Ström-Olsen J.O., Synergy of hydrogen sorption in ball-milled hydrides of Mg and Mg2Ni, J. Alloys Compd., 1999, 289: 197.

    Article  CAS  Google Scholar 

  14. Blomqvist H., Rönnebro E., Noréus D., and Kuji T., Competing stabilisation mechanisms in Mg2NiH4, J. Alloys Compd., 2002, 330–332: 286.

    Google Scholar 

  15. Stampfer J.J., Holley C.E., and Suttle J.F., The magnesium-hydrogen system, J. Am. Chem. Soc., 1960, 82: 3504.

    Article  CAS  Google Scholar 

  16. Li Q., Chou K.C., Lin Q., Jiang L.J., and Zhan F., Hydrogen absorption and desorption kinetics of Ag-Mg-Ni alloys, Int. J. Hydrogen Energy, 2004, 29: 843.

    Article  CAS  Google Scholar 

  17. Li Q., Chou K.C., Lin Q., Jiang L.J., and Zhan F., Influence of the initial hydrogen pressure on the hydriding kinetics of the Mg2−x AlxNi (x = 0, 0.1) alloys, Int. J. Hydrogen Energy, 2004, 29: 1383.

    Article  CAS  Google Scholar 

  18. Hu L., Han S.M., Li J., Yang C., Li Y., and Wang M.Z., Phase structure and hydrogen absorption property of LaMg2Cu, Mater. Sci. Eng. B, 2010, 166: 209.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shumin Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Liu, B., Han, S. et al. Phase structure and hydrogen storage properties of LaMg3.70Ni1.18 alloy. Rare Metals 30, 458–463 (2011). https://doi.org/10.1007/s12598-011-0413-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0413-3

Keywords

Navigation