Skip to main content
Log in

Spin coating-Co-reduction approach: A general strategy for preparation of oriented chalcogenide thin film on arbitrary substrates

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A new and general spin coating-co-reduction strategy for synthesis of c-axis oriented (Bi,Sb)2(Te,Se)3 chalcogenide thin films and multi-layered structures on different substrates was reported. This method combines spin coating technique and co-reduction chemical reaction processes using commercial nitrates and oxides as raw materials. This simple and reliable method provides a new approach for fabricating chalcogenide semiconductor or semi-metal thin films, and will have wide application potential in opto-electric, thermoelectric, phase-change memory, chemical sensor, and spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu R., Husmann A., Rosenbaum T.F., Saboungi M.L., Enderby J.E., and Littlewood P.B., Large magnetoresistance in non-magnetic silver chalcogenides, Nature 1997, 390: 57.

    Article  CAS  Google Scholar 

  2. Thornburg, D.D., Memory switching in a type I amorphous chalcogenide, J. Electron. Mater. 1973, 2: 3.

    Article  CAS  Google Scholar 

  3. Nakayama K., Kitagawa T., Ohmura M., and Masakuni S., Nonvolatile memory based on phase transition in chalcogenide thin film. Jpn. J. Appl. Phys., 1993, 32: 564.

    Article  CAS  Google Scholar 

  4. Stocker H.J., Bulk and thin film switching and memory effects in semiconducting chalcogenide glasses, Appl. Phys. Lett., 1969, 15: 55.

    Article  CAS  Google Scholar 

  5. Kyratsi T., Chrissafis K., Wachter J., Paraskevopoulos K.M., and Kanatzidis M.G., KSb5S8: A wide bandgap phase-change material for ultra high density rewritable information storage, Adv. Mater., 2003, 15: 1428.

    Article  CAS  Google Scholar 

  6. Mane R.S., and Lokhande C.D., Chemical deposition method for metal chalcogenide thin films, Mater. Chem. Phys., 2000, 65: 1.

    Article  CAS  Google Scholar 

  7. Hsu K.F., Loo S., Guo F., Chen W., Dyck J.S., Uher C., Hogan T., Polychroniadis E.K., and Kanatzidis M.G., Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit, Science, 2004, 303: 818.

    Article  CAS  Google Scholar 

  8. Owen A.E., Firth A.P., and Ewen P.J.S., Photo-induced structural and physico-chemical changes in amorphous chalcogenide semiconductors, Phil. Mag. B, 1985, 52: 347.

    Article  CAS  Google Scholar 

  9. Fan Z., Razavi H., Do J., Moriwaki A., Ergen O., Chueh Y., Leu P.W., Ho J.C., Takahashi T., Reichertz L.A., Neale S., Yu K., Wu M., Ager J.W., and Javey A., Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates, Nat. Mater., 2009, 8: 648.

    Article  CAS  Google Scholar 

  10. Zogg H., Fach A., Maissen C., Masek J., and Blunier S., Photovoltaic lead-chalcogenide on silicon infrared sensor arrays, Opt. Eng., 1994, 33: 1440.

    Article  CAS  Google Scholar 

  11. Shah A., Torres P., Tscharner R., Wyrsch N., and Keppner H., Photovoltaic technology: The case for thin-film solar cells, Science, 1999, 285: 692.

    Article  CAS  Google Scholar 

  12. Mourzina Y.G., Schubert J., Zander W., Legin A., Vlsov Y.G., Lüth H., and Schöning M.J., Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions, Electrochimica Acta, 2001, 47: 251.

    Article  CAS  Google Scholar 

  13. Yamada N., Ohno E., Nishiuchi K., Akahira N., and Takao M., Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory, J. Appl. Phys., 1991, 69: 2849.

    Article  CAS  Google Scholar 

  14. Venkatasubramanian R., Colpitts T., O’Quinn B., Liu S., El-Masry N., and Lamvik M., Low-temperature organometallic epitaxy and its application to superlattice structures in thermoelectrics, Appl. Phys. Lett., 1999, 75: 1104.

    Article  CAS  Google Scholar 

  15. Venkatasubramanian R., Siivola E., Colpitts T., and O’Quinn B., Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 2001, 413: 597.

    Article  CAS  Google Scholar 

  16. Harman T.C., Taylor P.J., Walsh M.P., and LaForge B.E., Quantum dot superlattice thermoelectric materials and devices, Science, 2002, 297: 2229.

    Article  CAS  Google Scholar 

  17. Harman T.C., Taylor P.J., and Walsh M.P., Thermoelectric quantum-dot superlattices with high ZT, J. Electron. Mater., 2000, 29: L1.

    Article  CAS  Google Scholar 

  18. Colletti L.P., Flowers B.H., and Stickney J.L., Formation of thin films of CdTe, CdSe, and CdS by electrochemical atomic layer epitaxy, J. Electronchem. Soc., 1998, 145: 1442.

    Article  CAS  Google Scholar 

  19. Dimitrakopoulos C.D., and Mascaro D.J., Organic thin-film transistors: A review of recent advances, IBM J. Res. Dev., 2001, 45: 11.

    Article  CAS  Google Scholar 

  20. Cui H., Liu H., Li X., Wang J., Han F., Zhang X., and Boughton R.I., Synthesis of Bi2Se3 thermoelectric nanosheets and nanotubes through hydrothermal co-reduction method, J. Solid State Chem., 2004, 177: 4001.

    Article  CAS  Google Scholar 

  21. Liu H., Cui H., Han F., Li X., Wang J., and Boughton R.I., Growth of Bi2Se3 nanobelts synthesized through a Co-reduction method under ultrasonic irradiation at room temperature, Cryst. Growth Des., 2005, 5: 1711.

    Article  CAS  Google Scholar 

  22. Lankhorst M.H.R., Ketelaars B.W.S.M.M., and Wolters R.A.M., Low-cost and nanoscale non-volatile memory concept for future silicon chips, Nat. Mater., 2005, 4: 347.

    Article  CAS  Google Scholar 

  23. Ozaki T., Araki M., Yoshimura S., Koyama H., and Koshida N., Photoelectronic properties of porous silicon, J. Appl. Phys., 1994, 76: 1986.

    Article  CAS  Google Scholar 

  24. McConnell H.M., Owicki J.C., Parce J.W., Miller D.L., Baxter G.T., Wada H.G., and Pitchford S., The cytosensor microphysiometer biological applications of silicon technology, Science, 1992, 257: 1906.

    Article  CAS  Google Scholar 

  25. Min G., and Rowe D.M., Cooling performance of integrated thermoelectric microcooler, Solid State Electron., 1999, 43: 923.

    Article  CAS  Google Scholar 

  26. Dean J.A., Lange’s Handbook of Chemistry, 15th ed., McGraw-Hill, London 1999.

    Google Scholar 

  27. Bart J.C.J., Bossi A., Perissinoto P., Castellan A., and Giordano N., Some observations on the thermochemistry of telluric acid, J. Therm. Anal. Calorim., 1975, 8: 313.

    Article  CAS  Google Scholar 

  28. Kolobov A.V., Fons P., Frenkel A.I., Ankudinov A.L., Tominaga J., and Uruga T., Understanding the phase-change mechanism of rewritable optical media, Nat. Mater., 2004, 3: 703.

    Article  CAS  Google Scholar 

  29. Boyer A., and Cisse E., Properties of thin film thermoelectric materials application to sensors using the Seebeck effect, Mat. Sci. Eng. B: Solid, 1992, 13: 103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Liu, H., Qin, H. et al. Spin coating-Co-reduction approach: A general strategy for preparation of oriented chalcogenide thin film on arbitrary substrates. Rare Metals 30 (Suppl 1), 651–656 (2011). https://doi.org/10.1007/s12598-011-0365-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0365-z

Keywords

Navigation