Skip to main content
Log in

Cyclic behaviour and plastic strain memory effect of 55NiCrMoV7 steel under low cycle fatigue

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Cyclic plastic behaviour of tempered martensitic tool steel 55NiCrMoV7 with four different initial hardness levels was studied under tensile-compress low cycle fatigue (LCF) in the temperature range from room temperature up to 873 K. Cyclic behavior tests and strain memory effect tests were performed in symmetrical tensile-compression strain loading with a triangular waveform. The results show that steel represents cyclic softening behaviour. The cyclic stress response generally shows an initial exponential softening for the first few cycles, followed by a gradual softening without saturation. Cyclic stress response depends on strain rate. The steel represents cyclic viscoplasticity. The steel shows the plastic strain memory effects at each test temperature, the cyclic stress and cumulated plastic strain depends on the history of cyclic loading. If strain amplitude increases after a previous linear softening is achieved, a new rapid non-linear cyclic softening appears. In the opposite, if strain amplitude decreases from higher one to lower, softening remains linear, and moreover σ-p curve goes along the previous way at the previous same strain loading level. It was discussed that the influences of initial hardness, fatigue temperature, strain rate and cyclic strain amplitude on cyclic plasticity of the steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernhart G., Moulinier G., Brucelle O., and Delagnes D., High temperature low cycle fatigue behaviour of a martensitic forging tool steel, Int. J. Fatigue, 1999, 21(2):179.

    Article  CAS  Google Scholar 

  2. Ryuichiro E., and Katsuaki K., Failure analysis of hot forging dies for automotive components, Engineering Failure Analysis, 2008, 15: 881.

    Google Scholar 

  3. Okayasu M., Sato K., Mizuno M., Hwang D.Y., and Shin D.H., Fatigue properties of ultra-fine grained dual phase ferrite/martensite low carbon steel, Int. J. Fatigue, 2008, 30(8):1358.

    Article  CAS  Google Scholar 

  4. Delagnes D., Lamesle P., Mathon M.H., Mebarki N., and Levaillant C., Influence of silicon content on the precipitation of secondary carbides and fatigue properties of a 5%Cr tempered martensitic steel, Materials Science and Engineering A, Structural Materials, 2005, 394(1–2): 435.

    Article  Google Scholar 

  5. Furuya Y., Matsuoka S., Shimakura S., Hanamura T., and Torizuka S., Effect of carbon and phosphorus addition on the fatigue properties of ultrafine-grained steels. Scripta Mater, 2005, 52: 1163.

    Article  CAS  Google Scholar 

  6. Kimura H., Akiniwa Y., Tanaka K., Kondo J., and Ishikawa T., Effect of microstructure on fatigue crack propagation behavior in ultrafinegrained steel, J. Mater Sci. Soc. Jpn., 2002, 51: 795.

    Article  CAS  Google Scholar 

  7. Bache M.R., Jones J.P., Drew G.L., Hardy M.C., and Fox N., Environment and time dependent effects on the fatigue response of an advanced nickel based superalloy, Int. J. Fatigue, 2009, 31(11–12): 1719.

    Article  CAS  Google Scholar 

  8. Zhang Z., Delagnes D., and Bernhart G., Ageing effect on cyclic plasticity of a tempered martensitic steel, Int.J. Fatigue, 2007, 29(2): 336.

    Article  CAS  Google Scholar 

  9. Zhang Z.P., Qi Y.H., Delagnes D., and Bernhart G., Microstructure variation and hardness diminution during low cycle fatigue of 55NiCrMoV7 steel, Journal of Iron and Steel Research, International, 2007, 14(6): 68.

    Article  CAS  Google Scholar 

  10. Kang G., and Gao Q., Uniaxial Ratcheting of SS316L Stainless Steel at High Temperature: Experiments and Simulations, [in] Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology, Beijing, 2005. 1006.

  11. Ishihara S., McEvily A.J., Sato M., Taniguchi K., and Goshima T., The effect of load ratio on fatigue life and crack propagation behavior of an extruded magnesium alloy, Int. J. Fatigue, 2009, 31(11–12): 1788.

    Article  CAS  Google Scholar 

  12. Hong, S.G., and Lee S.-B., The tensile and low-cycle fatigue behavior of cold worked 316L stainless steel: influence of dynamic strain aging, Int. J. Fatigue, 2004, 26: 899.

    Article  CAS  Google Scholar 

  13. Velay V., Bernhart G., and Penazzi L., Cyclic behavior modeling of a tempered martensitic hot work tool steel, International Journal of Plasticity, 2006, 22(3): 459.

    Article  CAS  Google Scholar 

  14. Huang Z.Y., Wagner D., Bathias C., and Chaboche J.L., Cumulative fatigue damage in low cycle fatigue and gigacycle fatigue for low carbon-manganese steel, Int. J. Fatigue, 2011, 33(2): 115.

    Article  Google Scholar 

  15. Kobayashi K., Yamaguchi K., Hayakawa M., and Kimura M., High-temperature fatigue properties of austenitic superalloys 718, A286 and 304L, Int.J. Fatigue, 2008, 30: 1978.

    Article  CAS  Google Scholar 

  16. Dafalias Y.F., Kourousis K.I., and Saridis G.J., Multiplicative AF kinematic hardening in plasticity, Int. J. Solid Structures, 2008, 45: 2861.

    Article  Google Scholar 

  17. Humayun Kabir S.M., Yeo T.I., and Kim S.H., Characterization of material parameters, [in] Proceedings of the World Congress on Engineering, London, 2009.

  18. Yoon S., Hong S., and Lee S., Phenomenological description of cyclic deformation using the overlay model, Material science and engineering, 2004, A364: 17.

    Article  CAS  Google Scholar 

  19. Zhang Z., Delagnes D., and Bernhart G., Anisothermal cyclic plasticity modelling of martensitic steels, International Journal of Fatigue, 2002, 24(6): 635.

    Article  CAS  Google Scholar 

  20. Zhang Z., Delagnes D., and Bernhart G., Cyclic behaviour constitutive modeling of a tempered martensitic steel including ageing effect, Int. J. Fatigue, 2008, 30(4): 706.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Delagnes, D. & Bernhart, G. Cyclic behaviour and plastic strain memory effect of 55NiCrMoV7 steel under low cycle fatigue. Rare Metals 30 (Suppl 1), 443–446 (2011). https://doi.org/10.1007/s12598-011-0321-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0321-6

Keywords

Navigation