Skip to main content
Log in

Orthogonal test design for preparation of TiO2/Graphene composites and study on its photocatalytic activity

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

An one-step hydrothermol method was developed to synthesize TiO2/Graphene composites (TiO2/GR) by employing graphene oxide and tetra-n-butyl titanate. The factors affecting the photocatalytic activity of TiO2/GR were studied by using orthogonal design, and the optimum conditions are: reaction temperature 180 °C, reaction time 16 h and pH value 3.0. TiO2/GR was characterized on crystal structure, particle size, morphology and specific surface area by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and BET analysis. The results show that the TiO2 in composites is anatase and the average diameter is about 18 nm. The BET specific surface area of the TiO2/GR is 170 m2/g and the average pore diameter is 12.45 nm. Under visible light (λ > 420 nm), the photodegradation of RhB by TiO2/GR indicates that the best photocatalytic activities is observed with TiO2/GR, compared to P25 and bare TiO2 obtained by the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson M., Österlund L., Ljungström S, Ljungström, and Anders Palmqvist, Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol, J. Phys. Chem. B, 2002, 10641): 10674.

    Article  CAS  Google Scholar 

  2. Ramakrishna G., and Ghosh H. N., Emission from the charge transfer state of xanthene dye-sensitized TiO2 nanoparticles: a new approach to determining back electron transfer rate and verifying the Marcus inverted regime, J. Phys. Chem. B, 2001, 105(29): 7000.

    Article  CAS  Google Scholar 

  3. Wu J.M., Hayakawa S., Tsuru K, and Akiyoshi Osaka, In vitro bioactivity of anatase film obtained by direct deposition from aqueous titanium tetrafluoride solutions, Thin Solid Films, 2002, 414: 275.

    Article  CAS  Google Scholar 

  4. Wang Zhao, Mao Feng, Huang Xiangping, Wei Huili, Zhang Changyuan, and Feng Shengqin, One-step hydrothermal synthesis of titania nanorod-assembled-microfibers and its photocatalytic activities, Journal of Materials Science & Engineering, 2009, 27(1): 96.

    CAS  Google Scholar 

  5. Wang Kui, Qian Xiaoliang, Fang Caixia, and Liu Shiming, Preparation and photocatalytic activity of a new type of immobilized photocatalyst, Environmental Protection of Chemical Industry, 2005, 25(3): 169.

    CAS  Google Scholar 

  6. Hong Donglian, Qiang Dingke, and Cao Meng, Preparation and characterizati on of the composite nano-material of titanium dioxide/carbon nanotubes (TiO2/CNT), Journal of Hebei Normal University/Naturai Science Editionl, 2008, 32(3): 367.

    Google Scholar 

  7. Hu Kaiwen, Synthesis, characterization and photocatalytic property of carbon nanotube supported TiO2, Journal of Hubei University of Technology, 2009, 24(4): 22.

    Google Scholar 

  8. Wu Yucheng, Liu Xiaolu, Ye Min, Xie Ting, and Huang Xinmin, Preparation and properties of carbon nanotube-TiO2 nanocomposites, Acta Physico-Chimica Sinica, 2008, 24(1): 97.

    Article  CAS  Google Scholar 

  9. Wendong Wanga, Philippe Serpb, Philippe Kalckb, and Joaquim Lu’is Faria, Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method, Applied Catalysis B: Environmental, 2005, 56(4): 305.

    Article  Google Scholar 

  10. Wang W.D., Serp P., Kalck P., and Faria J.L., Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method, Journal of Molecular Catalysis A Chemical, 2005, 235(1–2): 194.

    Article  CAS  Google Scholar 

  11. McAllister M.J., Li J.L., Adamson D.H., Schniepp H.C., Abdala A.A., Liu J., Herrera-Alonso M., Milius D.L., Car R., Prud’homme R.K., and Aksay I.A., Single sheet functionalized graphene by oxidation and thermal expansion of graphite, Chem. Mater., 2007, 19: 4396.

    Article  CAS  Google Scholar 

  12. Nair R.R., Blake P., Grigorenko A.N., Novoselov K.S., Booth T.J., Stauber T., Peres N.M.R., and Geim A.K., Fine structure constant defines visual transparency of graphene, Science, 2008, 320: 1308.

    Article  CAS  Google Scholar 

  13. Zhang Xiaoyan, Li Haopeng, and Cui Xiaoli, Preparation and photocatalytic activity for hydrogen evolution of TiO2/graphene sheets composite, Chinese Journal of Inorganic Chemistry, 2009, 25(11): 1903.

    CAS  Google Scholar 

  14. Zhang Hao, Lv Xiaojun, Li Yueming, Wang Ying, and Li Jinghong, P25-graphene composite as a high performance photocatalyst, ACS Nano., 2010, 4(1): 380.

    Article  CAS  Google Scholar 

  15. Wang Donghai, Choi Daiwon, Li Juan, Yang Zhenguo, Nie Zimin, Kou Rong, Hu Dehong, Wang Chongmin, Saraf Laxmikant V., Zhang Jiguang, Aksay Ilhan A., and Liu Jun, Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion, ACS Nano., 2009, 3(4): 907.

    Article  CAS  Google Scholar 

  16. Sun Shengrui, Gao Lian, and Liu Yangqiao, Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation, Applied Physics Letters, 96(8): 083113-1

  17. Nethravathi C., and Rajamathi M., Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon, 2008, 46(14): 1994.

    Article  CAS  Google Scholar 

  18. WS Hummers Jr, RE Offeman, Preparation of graphitic oxide, Journal of the American Chemical, 1958, 80(6): 1339.

    Article  CAS  Google Scholar 

  19. Masukazu Hirata, Takuya Gotou, Shigeo Horiuchi, Masahiro Fujiwara, and Michio Ohba, Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles, Carbon, 2004, 42: 2929.

    CAS  Google Scholar 

  20. Tang Xingming, Study on the chemical purification of graphite, Metallurgy of Sichuan, 2000, 3: 57.

    Google Scholar 

  21. Huang Guirong, and Chen Jian, Synthesis and applications of graphene, Carbon Techniques, 2009, 28(4): 10.

    Google Scholar 

  22. Xiao Min, Du Xusheng, Meng Yuezhong, and Gong Kecheng, The influence of thermal treatment conditions on the structures and electrical conductivities of graphite oxide, New Carbon Materials, 2004, 19(2): 92.

    CAS  Google Scholar 

  23. Bourlinos A.B., Gournis D., Petridis D., Szab’o T., Szeri A., and D’ek’any I., Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids, Langmuir, 2003, 19: 6050.

    Article  CAS  Google Scholar 

  24. Wang X., Zhi L.J., and Müllen K., Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett., 2008, 8: 323.

    Article  CAS  Google Scholar 

  25. Ma Ying, Guan Zisheng, Cao Yaan, and Yao Jiannian, The effect of adsorption ability of TiO2 thin films on the photodegradative process of rhodamine B, Chinese Journal of Catalysis, 1999, 20(3): 350.

    CAS  Google Scholar 

  26. Zhang Liwu, Fu Hongbo, and Zhu Yongfa, Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon, Advanced functional Materials, 2008, 18: 2180.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Mao, F., Huang, X. et al. Orthogonal test design for preparation of TiO2/Graphene composites and study on its photocatalytic activity. Rare Metals 30 (Suppl 1), 271–275 (2011). https://doi.org/10.1007/s12598-011-0283-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0283-8

Keywords

Navigation