Skip to main content
Log in

First principles study of Ag-doped, Nb-doped and Ag/Nb doped SrTiO3

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Owing to practical applications in air and water remediation, hydrogen production and solar cells, photocatalysis have become interesting researched field. Except TiO2, SrTiO3 is considered as another efficient photocatalyst. However, because of the wide band gap, pristine SrTiO3 mainly absorbs ultraviolet light. Therefore, many efforts were devoted to extending the spectral response to visible light by anion or metal doping. In the present work, the Ag-doped, Nb-doped and Ag/Nb-doped SrTiO3 were studied by means of DFT calculations. The results indicate that the Ag 4d states in the Ag-doped SrTiO3 mainly locate at the top of valance band, and the hybridization with O 2p makes the band gap narrowing, which can improve the visible light photoactivity. In order to keep electrical neutrality, the Ag/Nb co-doping SrTiO3 were investigated, and the results suggest that the induction of Nb is in favor of the incorporation of Ag and the band gap does not change essentially, which is in agreement with the experimental investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lehn J., Sauvage J., and Ziessel R., Photochemical water splitting-continuous generation of hydrogen and oxygen on irradiation of aqueous suspensions of metal loaded strontium titanate, Nouv. J. Chim., 1980, 4(11): 623.

    CAS  Google Scholar 

  2. Wrighton M., Ellis A., Wolczanski P., Morse D., Abrahamson H., and Ginley D., Strontium titanate photoelectrodes efficient photoassisted electrolysis of water at zero applied potential, Journal of the American Chemical Society, 1976, 98(10): 2774.

    Article  CAS  Google Scholar 

  3. Magliozzo R., and Krasna A., Hydrogen and oxygen photoproduction by titanate powders, Photochemistry and Photobiology, 1983, 38(1): 15.

    Article  CAS  Google Scholar 

  4. Domen K., Kudo A., Onishi T., Kosugi N., and Kuroda H., Photocatalytic decomposition of water into H2 and O2 over NiO-SrTiO3 powder. I: Structure of the catalyst, Journal of Physical Chemistry, 1986, 90(2): 292.

    Article  CAS  Google Scholar 

  5. Kumar A., Santangelo P., and Lewis N., Electrolysis of water at strontium titanate (SrTiO3) photoelectrodes: distinguishing between the statistical and stochastic formalisms for electron-transfer processes in fuel-forming photoelectrochemical systems, Journal of Physical Chemistry, 1992, 96(2): 834.

    Article  CAS  Google Scholar 

  6. Chang C., Ray B., Paul D., Demydov D., and Klabunde K., Photocatalytic reaction of acetaldehyde over SrTiO3 nanoparticles, Journal of Molecular Catalysis A: Chemical, 2008, 281(1–2): 99.

    Article  CAS  Google Scholar 

  7. Wei W., Dai Y., Guo M., Yu L., and Huang B., Density functional characterization of the electronic structure and optical properties of N-doped, La-doped, and N/La-codoped SrTiO3, Journal of Physical Chemistry C, 2009, 113(33): 15046.

    Article  CAS  Google Scholar 

  8. Wei W., Dai Y., Jin H., and Huang B., Density functional characterization of the electronic structure and optical properties of Cr-doped SrTiO3, Journal of Physics D: Applied Physics, 2009, 42(5): 055401.

    Article  Google Scholar 

  9. Guo M., and Dai Y., Semiconductor photocatalysts for the visible light absorption from wide-gap semiconductors with dopant modification, Zeitschrift für Kristallographie 2010, 225(11): 528.

    Article  CAS  Google Scholar 

  10. Irie H., Maruyama Y., and Hashimoto K., Ag+- and Pb2+-doped SrTiO3 photocatalysts. A correlation between band structure and photocatalytic activity, Journal of Physical Chemistry C, 2007, 111(4): 1847.

    Article  CAS  Google Scholar 

  11. Wang D., Kako T., and Ye J., Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under visible-light irradiation, Journal of the American Chemical Society, 2008, 130(9):2724.

    Article  CAS  Google Scholar 

  12. Wang D., Kako T., and Ye J., New series of solid-solution semiconductors (AgNbO3)1−x (SrTiO3)x with modulated band structure and enhanced visible-light photocatalytic activity, Journal of Physical Chemistry C, 2009, 113(9): 3785.

    Article  CAS  Google Scholar 

  13. Subramanian V., Roeder R., and Wolf E., Synthesis and UV-visible-light photoactivity of noble-metal-SrTiO3 composites, Ind. Eng. Chem. Res., 2006, 45(7): 2187.

    Article  CAS  Google Scholar 

  14. Wei W., Dai Y., Guo M., Zhu Y., and Huang B., Density functional theory study of Ag adsorption on SrTiO3 (001) surface, Journal of Physical Chemistry C, 2010, 114(24): 10917.

    Article  CAS  Google Scholar 

  15. Blennow P., Hagen A., Hansen K., Wallenberg L., and Mogensen M., Defect and electrical transport properties of Nb-doped SrTiO3, Solid State Ionics, 2008, 179(35–36):2047.

    Article  CAS  Google Scholar 

  16. Konta R., Ishii T., Kato H., and Kudo A., Photocatalytic activities of noble metal ion doped SrTiO3 under visible light irradiation, Journal of Physical Chemistry B, 2004, 108(26): 8992.

    Article  CAS  Google Scholar 

  17. Shibuya K., Dittmann R., Mi S., and Waser R., Impact of defect distribution on resistive switching characteristics of Sr2TiO4 thin films, Advanced Materials, 2009, 22(3): 411.

    Article  Google Scholar 

  18. Szafraniak I., Harnagea C., Scholz R., Bhattacharyya S., Hesse D., and Alexe M., Ferroelectric epitaxial nanocrystals obtained by a self-patterning method, Applied Physics Letters, 2003, 83(11): 2211.

    Article  CAS  Google Scholar 

  19. Binnig G., Baratoff A., Hoenig H., and Bednorz J., Two-band superconductivity in Nb-doped SrTiO3, Physical Review Letters, 1980, 45(16): 1352.

    Article  CAS  Google Scholar 

  20. Takizawa M., Maekawa K., Wadati H., Yoshida T., Fujimori A., Kumigashira H., and Oshima M., Angle-resolved photoemission study of Nb-doped SrTiO3, Physical Review B, 2009, 79(11): 113103.

    Article  Google Scholar 

  21. Astala R., and Bristowe P., First principles calculations of niobium substitution in strontium titanate, Journal of Physics: Condensed Matter, 2002, 14(6): L149.

    Article  CAS  Google Scholar 

  22. Hamid A., Atomic and electronic structure of oxygen vacancies and Nb-impurity in SrTiO3, Applied Physics A: Materials Science & Processing. 2009, 97(4): 829.

    Article  CAS  Google Scholar 

  23. Guo X., Chen X., Sun Y., Sun L., Zhou X., and Lu W., Electronic band structure of Nb doped SrTiO3 from first principles calculation, Physics Letters A, 2003, 317(5–6): 501.

    Article  CAS  Google Scholar 

  24. Eglitis R., and Kotomin E., Ab initio calculations of Nb doped SrTiO3, Physica B: Condensed Matter. 2010.

  25. Kresse G., and Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, Physical Review B, 1999, 59(3): 1758.

    Article  CAS  Google Scholar 

  26. Kresse G., and Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, 1996, 6(1): 15.

    Article  CAS  Google Scholar 

  27. Kresse G., and Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical Review B, 1996, 54(16): 11169.

    Article  CAS  Google Scholar 

  28. Dovesi R., Saunders V.R., Roetti R., Orlando R., Zicovich-Wilson C.M., Pascale F., Civalleri B., Doll K., Harrison N. M., Bush I. J., D’Arco P., and Llunell M., CRYSTAL06 User’s Manual, 2006.

  29. Piskunov S., Heifets E., Eglitis R., and Borstel G., Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study, Computational Materials Science, 2004, 29(2): 165.

    Article  CAS  Google Scholar 

  30. Dall’Olio S., Dovesi R., and Resta R., Spontaneous polarization as a Berry phase of the Hartree-Fock wave function: The case of KNbO3, Physical Review B, 1997, 56(16): 10105.

    Article  Google Scholar 

  31. Corá F., The performance of hybrid density functionals in solid state chemistry: the case of BaTiO3, Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 2005, 103(18): 2483

    Google Scholar 

  32. Bredow T., Jug K., and Evarestov R., Electronic and magnetic structure of ScMnO3, Physica Status Solidi (B), 2006, 243(2): R10.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Dai, Y., Wei, W. et al. First principles study of Ag-doped, Nb-doped and Ag/Nb doped SrTiO3 . Rare Metals 30 (Suppl 1), 177–182 (2011). https://doi.org/10.1007/s12598-011-0264-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0264-y

Keywords

Navigation