Skip to main content
Log in

Research on effect of ZrO2 on thermal stability and structure of Ga/In based fluoride glasses

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A systematic investigation on glass formation in the 20GaF3-15InF3-20CdF2-15ZnF2-(20-x)PbF2-10SnF2-xZrO2 (xZ-GICZPS) system (x = 0, 2, 4, 6, 8 in mol.%) was carried out. These glasses were characterized by differential scanning calorimetry (DSC), infrared (IR) spectra and Raman spectra. The DSC results show that the thermal stability is affected by PbF2 and ZrO2 contents. With increasing ZrO2 content, the thermal stability is improved at first and then reduced, which is proved by thermal stability factors ΔT and S determined by DSC. As a result, the 20GaF3-15InF3-20CdF2-15ZnF2-14PbF2-10SnF2-6ZrO2 glass shows the largest parameters ΔT and S, processing the most excellent thermal stability. Analyses of IR spectra reveal that glasses have broad transparency range in IR region. According to Raman spectra, the glass network structures are basically composed of mixed [(In, Ga)F6] and In[O, F]6 units and ZrO2 mainly acts as network modifier in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adam J.-L., Fluoride glass research in France: fundamentals and applications, J. Flu. Chem., 2001, 107: 265.

    Article  CAS  Google Scholar 

  2. Zhang G., Friot B., and Poulain M., New gallium and indium based fluoride glasses, J. Non-Cryst. Solids, 1997, 213–214: 6.

    Article  Google Scholar 

  3. Boutarfaia A., and Poulain M., Fluoride glasses in the InF3-GaF3-YF3-PbF2-CaF2-ZnF2 system, J. Phys. Chem. Solids, 2002, 63: 2129.

    Article  CAS  Google Scholar 

  4. Nishida Y., Kanamori T., and Sakamoto T., Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3 μm Pr3+-doped fiber amplifier host, J. Non-Cryst. Solids, 1997, 221: 238.

    Article  CAS  Google Scholar 

  5. Cho S.-H., Chang W.-S., Kim K.-R., and Hong J.W., Dynamics of plasma formation and permanent structural transformation in ZBLAN excited by tightly focused femtosecond laser pulses, Opt. Las. Eng., 2009, 47: 127.

    Article  Google Scholar 

  6. Wang B., Cheng L., Zhong H., Sun J., Tian Y., Zhang X., and Chen B., Excited state absorption cross sections of 4I13/2 of Er3+ in ZBLAN, Opt. Mater., 2009, 31: 1658.

    Article  CAS  Google Scholar 

  7. Salanne M., Simon C., Groult H., Lantelme F., Goto T., and Barhoun A., Transport in molten LiF-NaF-ZrF4 mixtures: A combined computational and experimental approach, J. Flu. Chem., 2009, 130: 61.

    Article  CAS  Google Scholar 

  8. Kompanichenko N.M., Omel’chuk A.O., Ivanenko O.P., and Zinchenko V.F., Phase transformations in LnF3-(Ln, Zr)-ZrF4 systems, where Ln = Sm, Eu, Tm, Yb, J. Flu. Chem., 2010, 131: 282.

    Article  CAS  Google Scholar 

  9. Edgar A., Varoy C.R., Koughia C., Tonchev D., Belev G., Okada G., Kasap S.O., Seggern H. von, and Ryan M., Optical properties of divalent samarium-doped fluorochlorozirconate glasses and glass ceramics, Opt. Mater., 2009, 31: 1459.

    Article  CAS  Google Scholar 

  10. Zhu J., Li Z., Liu T., Zhu Y., Tang G., and Bai C., EXAFS study of 20GaF3-15InF3-20CdF2-15ZnF2-20PbF2-10SnF2 glass, J. Non-Cryst. Solids, 2008, 354: 1182.

    Article  CAS  Google Scholar 

  11. Tang G., Zhu J., Zhu Y., and Bai C., The study on properties of Eu3+-doped fluorogallate glasses, J. Alloy. Compd., 2008, 453: 487.

    Article  CAS  Google Scholar 

  12. Zhu J., He Y., Li Z., Qiu L., and Shen W., Up conversion properties of the Er3+ doped 20GaF3-15InF3-20CdF2-15ZnF2-20PbF2-10SnF2 glasses, J. Non-Cryst. Solids, 2005, 351: 1619.

    Article  CAS  Google Scholar 

  13. Uhlmann D.R., Glass formation, J. Non-Cryst. Solids, 1977, 25: 42.

    Article  CAS  Google Scholar 

  14. Saad M., and Poulain M., Glass forming ability criterion, Mater. Sci. Forum, 1987, 19–20: 11.

    Article  Google Scholar 

  15. Liao M., Sun H., Wen L., Fang Y., and Hu L., Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphate glasses, Mater. Chem. Phys., 2006, 98: 154.

    Article  CAS  Google Scholar 

  16. Boutarfaia A., and Poulain M., New stable fluoroindate glasses, Solid State Ionics, 2001, 144: 117.

    Article  CAS  Google Scholar 

  17. Poulain M.J., in: Fluoride Glasses, edited by Alan E. Comyns, Wiley, New York, 1989: 11.

    Google Scholar 

  18. Dong D., Bo Z., Zhu J., and Ma F., Study of properties of InF3-based glasses containing different valent fluorides, J. Non-Cryst. Solids, 1996, 204: 260.

    Article  CAS  Google Scholar 

  19. Ouchetto M., Elouadi B., and Parke S., Infrared investigation of the chemical durability of lanthanum-zinc ultraphosphate glasses, Phys. Chem. Glasses, 1991, 32(2): 43.

    CAS  Google Scholar 

  20. Zarubin D.P., Infrared spectra of hydrogen-bonded hydroxyl groups in silicate glasses, Phys. Chem. Glasses, 1999, 40(4): 184.

    CAS  Google Scholar 

  21. Dyke S.F., Floyd A.J., Sainsbury M., and Theobald R.S., Organic Spectroscopy: An Introduction, Longman, London, 1978: 78.

    Google Scholar 

  22. Ignatieva L.N., Surovtsev N.V., and Plotnichenko V.G., The peculiarities of fluoride glass structure. Spectroscopic study, J. Non-Cryst. Solids, 2007, 353: 1238.

    Article  CAS  Google Scholar 

  23. Nalin M., Ribeiro S.J.L., Messaddeq Y., Schneider J., and Donoso P., Scandium fluorophosphate glasses: a structural approach, C. R. Chimie, 2002, 5: 915.

    Article  CAS  Google Scholar 

  24. Almeida R.M., Pereira J.C., Messaddeq Y., and Aegerter M.A., Vibrational spectra and structure of fluoroindate glasses, J. Non-Cryst. Solids, 1993, 161: 105.

    Article  CAS  Google Scholar 

  25. Hewek D., Glass and Rare Earth-Doped Glasses for Optical Fibres, INSPEC, London, 1999: 85.

    Google Scholar 

  26. Menezes L.De.S., Araújo Cid B. De, Messaddeq Y., and Aegerter M.A., Frequency upconversion in Nd3+-doped fluoroindate glass, J. Non-Cryst. Solids, 1997, 213–214: 256.

    Article  Google Scholar 

  27. Almeida R.M., Short and intermediate range structures in fluoride glasses by vibrational spectroscopy, J. Non-Cryst. Solids, 1992, 140: 92.

    Article  CAS  Google Scholar 

  28. Mastelaro V., Riberio S., Messaddeo Y., and Aegerter M., EXAFS and Raman spectroscopy study of binary indium fluoride glasses, J. Mater. Sci., 1996, 21: 3441.

    Google Scholar 

  29. Boulard D., Jiacoboni C., and Rousseau M., Comparative Raman study of fluoride crystals and glasses (TMFG) built up from octahedral entities, Mater. Sci. Forum, 1991, 67–68: 405.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiqian Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, J., Zhu, J., Zhou, K. et al. Research on effect of ZrO2 on thermal stability and structure of Ga/In based fluoride glasses. Rare Metals 30 (Suppl 1), 126–130 (2011). https://doi.org/10.1007/s12598-011-0253-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0253-1

Keywords

Navigation