Skip to main content

Advertisement

Log in

Gold nanoparticles for applications in energy and environment: synthesis and characterization

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Nanometre-size gold displays exceptional physical and chemical properties that depend not only on their sizes but also on their shapes. Here we investigate the growth of size-selected gold nanoclusters and their shapes characterized using both TEM and STEM. It is found that the cluster-substrate interaction influences the height of small nanoclusters Au80, as indicated by comparison between MgO and amorphous carbon substrate, but this effect is overcome by the dynamical landing process at high deposition energy. Moreover, large gold nanoclusters, Au8860 have asymmetric structures with aspect ratio between 1 and 2. The simulation shows that the icosahedral shape observed is significantly lower in energy than the alternatives and is expected to be stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim W.B., Voitl T., Rodriguez-Rivera G.J., and Dumesic J.A., Powering fuel cells with CO via aqueous polyoxometalates and gold catalysts, Science, 2004, 305: 1280.

    Article  CAS  Google Scholar 

  2. Yoon B., Hakkinen H., Landman U., Worz A.S., Antonietti J.-M., Abbet S., Judai K., and Heiz U., Charging effects on bonding and catalyzed oxidation of CO on Au-8 clusters on MgO, Science, 2005, 307: 403.

    Article  CAS  Google Scholar 

  3. Gluhoi A.C., Lin S.D., and Nieuwenhuys B.E., The beneficial effect of the addition of base metal oxides to gold catalysts on reactions relevant to air pollution abatement, Cata. Today, 2004, 90: 175.

    Article  CAS  Google Scholar 

  4. Liu Z.P., Jenkins S.J., and King D.A., Origin and activity of oxidized gold in water-gas-shift catalysis, Phys. Rev. Lett., 2005, 94: 196102.

    Article  Google Scholar 

  5. Hughes M.D., Xu Y-J., Jenkins P., Mcmorn P., Landon P., Enache D.L., Carley A. F., Attard G.A., Hutchings G.J, King F., Stitt E.H., Johnston P., Griffin K., and Kiely C.J., Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions, Nature, 2005, 437: 1132.

    Article  CAS  Google Scholar 

  6. Kowalska E., Mahaney O.O.P., Abe R., and Ohtani B., Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces, Phys. Chem. Chem. Phys., 2010, 12: 2344.

    Article  CAS  Google Scholar 

  7. Chen M.S., and Goodman D.W., The structure of catalytically active gold on titania, Science, 2004, 306: 252.

    Article  CAS  Google Scholar 

  8. Molina L.M., and Hammer B., Active role of oxide support during CO oxidation at Au/MgO, Phys. Rev. Lett., 2003, 90: 206102.

    Article  CAS  Google Scholar 

  9. Pratontep S., Carroll S.J., Xirouchaki C., Streun M., and Palmer R.E. Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation, Rev. Sci. Instrum., 2005, 76: 045103.

    Article  Google Scholar 

  10. Di Vece M., Young N.P., Li Z., Chen Y., and Palmer R.E., Co-deposition of atomic clusters of different size and composition, Small, 2006, 2: 1270.

    Article  Google Scholar 

  11. Hacquart R., and Jupille J., Hydrated MgO smoke crystals from cubes to octahedra. Chem. Phys. Lett., 2007, 429: 91.

    Article  Google Scholar 

  12. Chen Y., Palmer R.E., and Wilcoxon J.P., Sintering of passivated gold nanoparticles under the electron beam, Langmuir, 2006, 22: 2851.

    Article  CAS  Google Scholar 

  13. Li Z.Y., Yuan J., Chen Y., Palmer R.E., and Wilcoxon J.P., Local three-dimensional visualization of nanoparticle assemblies, Adv. Mater. 2005, 17: 2885.

    Article  CAS  Google Scholar 

  14. Li Z.Y., Yuan J., Chen Y., Palmer R.E., and Wilcoxon J.P., Direct imaging of core-shell structure in silver-gold bimetallic nanoparticles Appl. Phys. Lett. 2005, 87: 243103.

    Article  Google Scholar 

  15. Li Z.Y., Wilcoxon J.P., Yin F., Chen Y., and Palmer R. E., Structures and optical properties of 4-5 nm bimetallic AgAu nanoparticles, Faraday Discuss, 2008, 138: 363.

    Article  CAS  Google Scholar 

  16. Young N.P., Li Z.Y., Chen Y., Palomba S., Di. Vece M., and Palmer R.E., Weighing supported nanoparticles: Size-selected clusters as mass standards in nanometrology, Phys. Rev. Lett., 2008, 101: 246103.

    Article  CAS  Google Scholar 

  17. Curley B.C., Johnston R.L., Young N.P., Li Z.Y., Di Vece M., Palmer R.E., and Bleloch A.L., Combining theory and experiment to characterize the atomic structures of surface-deposited AU(309) clusters, J. Phys Chem., 2007, 111: 17846.

    CAS  Google Scholar 

  18. Miyamoto A., Hattori T., and Inui T., Moleular-dynamcs simulation of deposition process of ultrafine metal particles on MgO(100) surface, Appl. Surf. Sci., 1992, 60/61: 660.

    Article  Google Scholar 

  19. Barnard A.S., Young N., Kirkland A.I., van Huis M.A., and Xu H., Nanogold: a quantitative phase map, ACS Nano, 2009, 3: 1431.

    Article  CAS  Google Scholar 

  20. Barnard A.S., and Curtiss LA., Modeling the preferred shape, orientation and aspect ratio of gold nanorods J. Mater. Chem., 2007, 17: 3315.

    Article  CAS  Google Scholar 

  21. Barnard A.S., Shape, orientation, and stability of twinned gold nanorods, J. Phys. Chem. C, 2008, 112: 1385.

    Article  CAS  Google Scholar 

  22. Barnard A.S., A thermodynamic model for the shape and stability of twinned nanostructures, J. Phys. Chem. B, 2006, 110: 24498.

    Article  CAS  Google Scholar 

  23. Barnard A.S., Lin X.M., and Curtiss L.A., Equilibrium morphology of face-centered cubic gold nanoparticles > 3 nm and the shape changes induced by temperature, J. Phys. Chem. B, 2005, 109: 24465.

    Article  CAS  Google Scholar 

  24. Hofmeister H., Shape variations and anisotropic growth of multiply twinned nanoparticles, Z. Kristallogr, 2009, 224: 528.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y. Gold nanoparticles for applications in energy and environment: synthesis and characterization. Rare Metals 30 (Suppl 1), 116–120 (2011). https://doi.org/10.1007/s12598-011-0251-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0251-3

Keywords

Navigation