Skip to main content
Log in

Electrochemical behavior of Co3O4 microspheres in aqueous LiOH solution

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Co3O4 microspheres were synthesized in mass production by a simple hydrothermal treatment using trisodium citrate as a template. The pristine, discharged and recharged specimens were characterized by XRD, SEM and Raman spectroscopy measurements. The electrochemical behavior was studied by CV curves of Co3O4 at various scan rates in LiOH solution. Co3O4 particles underwent a reversible insertion of Li+ and H+ ions from LiOH solution. A linear relationship between the peak currents and the square root of scan rates for the redox peak pairs were determined, indicating a diffusion-controlled process of the Li+ deintercalation/intercalation in Co3O4 particles. The diffusion coefficients (D Li +) in anodic and cathodic processes are 2.15 × 10−10 and 9.1 × 10−12 cm2/s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Shi X.Y., Han S.B., Sanedrin R.J., Galvez C., Ho D.G., Hernandez B., Zhou F.M., and Selke M., Formation of cobalt oxide nanotubes: Effect of intermolecular hydrogen bonding between Co(III) complex precursors incorporated onto colloidal templates, Nano Lett., 2002, 2: 289.

    Article  CAS  Google Scholar 

  2. He T., Chen D.R., Jiao X.L., Xu Y.Y., and Gu Y.X., Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size, Langmuir, 2004, 20: 8404.

    Article  CAS  Google Scholar 

  3. Liu Y., and Zhang X.G., Effect of calcination temperature on the morphology and electrochemical properties of Co3O4 for lithium-ion battery, Electrochim. Acta, 2009, 54: 4180.

    Article  CAS  Google Scholar 

  4. Yuan Z.Y., Huang F., Feng C.Q., Sun J.T., and Zhou Y.H., Synthesis and electrochemical performance of nanosized Co3O4, Mater. Chem. Phys., 2003, 79: 1.

    Article  CAS  Google Scholar 

  5. Cao A.M., Hu J.S., Liang H.P., Song W.G., Wan L.J., He X.L., Gao X.G., and Xia S.H., Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors, J. Phys. Chem. B., 2006, 110: 15858.

    Article  CAS  Google Scholar 

  6. Tian B.Z., Liu X.Y., Yang H.F., Xie S.H., Yu C.Z., Tu B., and Zhao D.Y., General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica, Adv. Mater., 2003, 15: 1370.

    Article  CAS  Google Scholar 

  7. Liu Y., Mi C.H., Su L.H., and Zhang X.G., Hydrothermal Synthesis of Co3O4 Microspheres as anode material for lithium-ion batteries, Electrochem. Acta, 2008, 53: 2507.

    Article  CAS  Google Scholar 

  8. Hadjiev V.G., Iliev M.N. and Vergilov I.V., The Raman spectra of Co3O4, J. Phys. C: Solid State Phys., 1988, 21: L199.

    Article  Google Scholar 

  9. Liu H.C., and Yen S.K., Characterization of electrolytic Co3O4 thin films as anodes for lithium-ion batteries, J. Power Sources, 2007, 166(2): 478.

    Article  CAS  Google Scholar 

  10. Su L.H., Zhang X.G., Mi C.H., and Liu Y., Insights into the electrochemistry of layered double hydroxide containing cobalt and aluminum elements in lithium hydroxide aqueous solution, J. Power Sources, 2008, 179: 388.

    Article  CAS  Google Scholar 

  11. Mockenhaupt Ch., Zeiske Th., and Lutz H.D., Crystal structure of brucite-type cobalt hydroxide β-Co(OH)2-neutron diffraction, IR and Raman spectroscopy, J. Molecular Structure 1998, 443: 191.

    Article  CAS  Google Scholar 

  12. Song S.W., Han K.S., Sasagawa I., Watanabe T., and Yoshimura M., Effect of LiOH concentration change on simultaneous preparation of LiCoO2 film and powder by hydrothermal method, Solid State Ionics, 2000, 135: 277.

    Article  CAS  Google Scholar 

  13. Rao M.M., Jayalakshmi M., Schaf O., Wulff H., Guth U., and Scholz F., Electrochemical behaviour of solid lithium cobaltate (LiCoO2) and lithium manganate (LiMn2O4) in an aqueous electrolyte system, J. Solid State Electr., 2001, 5: 50

    Article  CAS  Google Scholar 

  14. Bard A.J. and Faulkner L.R., Electrochemical Methods: Fundamentals and Applications, second ed., John Wiley and Sons, New York, 2001.

    Google Scholar 

  15. Liu Y., Mi C.H., Yuan C.Z., and Zhang X.G., Improvement of electrochemical and thermal stability of LiFePO4 cathode modified by CeO2, J. Electroanal. Chem., 2009, 628: 73.

    Article  CAS  Google Scholar 

  16. Rho Y.H., and Kanamura K., Fabrication of thin film electrodes for all solid state rechargeable lithium batteries, J. Electroanal. Chem., 2003, 559: 69.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zhang, X. & Wu, Y. Electrochemical behavior of Co3O4 microspheres in aqueous LiOH solution. Rare Metals 30 (Suppl 1), 90–93 (2011). https://doi.org/10.1007/s12598-011-0245-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0245-1

Keywords

Navigation