Skip to main content
Log in

Microwave-assisted synthesis of porous nickel oxide nanostructures as anode materials for lithium-ion batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A self-assembled porous NiO nanorod nanocluster was reported in this work, which was prepared with the assistance of microwave-irradiation for 1–4 min. The obtained NiO nanocluster consistes of a few NiO nanorods, which are about 2–5 μm in length and 50–200 nm in diameter. The product were characterized by XRD, SEM and TEM and based on the observation it is believed that NiO nanoparticles are the building blocks to construct the structure of nanorod nanocluster. The NiO nanorod nanocluster is also fabricated as an anode material for rechargeable lithium ion batteries, which shows a high reversible capacity and good cycle life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poizot P., Laruelle S., Grugeon S., Dupont L., and Tarascon J.M., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 2000, 407(6803): 496.

    Article  CAS  Google Scholar 

  2. Poizot P., Laruelle S., Grugeon S., and Tarason J.M., Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li, J. Electrochem. Soc., 2002, 149(9): A1212.

    Article  CAS  Google Scholar 

  3. Lu Y., Wang Y., Zou Y.Q., Jiao Z., Zhao B., He Y.Q., and Wu M.H., Macroporous Co3O4 platelets with excellent rate capability as anodes for lithium ion batteries, Electrochem. Commun., 2010, 12(1): 101.

    Article  CAS  Google Scholar 

  4. Shi Y.F., Wan Y., Zhang R.Y., and Zhao D.Y., Synthesis of self-supported ordered mesoporous cobalt and chromium nitrides, Adv. Fun. Mater., 2008, 18(16): 2436.

    Article  CAS  Google Scholar 

  5. Du N., Zhang H., Chen B.D., Wu J.B., Ma X.Y., Liu Z.H., Zhang Y.Q., Yang D.R., Huang X.H., and Tu J.P., Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: a highly efficient material for Li-battery applications, Adv. Mater., 2007, 19(24): 4505.

    Article  CAS  Google Scholar 

  6. Rumplecker A., Kleitz F., Salabas E.L., and Schüth F., Hard templating pathways for the synthesis of nanostructured porous Co3O4, Chem. Mater., 2007, 19(3): 485.

    Article  CAS  Google Scholar 

  7. Wang Y., and Lee J.Y., Microwave-assisted synthesis of SnO2-graphite nanocomposites for Li-ion battery applications, J. Power Sources, 2005, 144(1): 220.

    Article  CAS  Google Scholar 

  8. Subramanian V., Burke W.W., Zhu H.W., and Wei B.Q., Novel microwave synthesis of nanocrystalline SnO2 and its electrochemical properties, J. Phys. Chem. C., 2008, 112(12): 4550.

    Article  CAS  Google Scholar 

  9. Xu L.P., Ding Y.S., Chen C.H., Zhao L.L., Rimkus C., Joesten R., and Suib S., 3D Flowerliker-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method, Chem. Mater., 2008, 20(1): 308.

    Article  CAS  Google Scholar 

  10. Cho S., Jung S.H., and Lee K.H., Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures, J. Phys. Chem. C, 2008, 112(11): 12769.

    Article  CAS  Google Scholar 

  11. Débart A., Dupont L., Poizot P., Leriche J-B., and Tarascon J.M., A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward Lithium, J. Electrochem. Soc., 2001, 148(11): A1266.

    Article  Google Scholar 

  12. Grugeon S., Laruelle S., Herrera-Urbina R., Dupont L., Poizot P., and Tarascona J-M., Particle size effects on the electrochemical performance of copper oxides toward Lithium, J. Electrochem. Soc., 2001, 148(4): A285.

    Article  CAS  Google Scholar 

  13. Lu H.W., Li D., Sun K., Li Y.S., and Fu Z.W., Carbon nanotube reinforced NiO fibers for rechargeable lithium batteries, Solid State Sci., 2009, 11(5): 982.

    Article  CAS  Google Scholar 

  14. Niasari M.S., Mir N., and Davar F., Synthesis and characterization of NiO nanoclusters via thermal decomposition, Polyhedron., 2009, 28(6): 1111.

    Article  Google Scholar 

  15. Chen S.Q., Chen P., Wu M., Pan D., and Wang Y., Graphene supported Sn-Sb@carbon core-shell particles as a superior anode for lithium ion batteries, Electrochem. Commun., 2010, 12(10): 1302.

    Article  CAS  Google Scholar 

  16. Song X., and Gao L., Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties, J. Phys. Chem. C., 2008, 112(39): 15299.

    Article  CAS  Google Scholar 

  17. Tao F.F., Guan M., Zhou Y., Zhang L., Xu Z., and Chen J., Fabrication of nickel hydroxide microtubes with micro-and nano-scale composite structure and improving electrochemical performance, Cryst. Growth Des., 2008, 8(7): 2157.

    Article  CAS  Google Scholar 

  18. Chen S. Q., and Wang Y., Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries, J. Mater. Chem., 2010, 20(43): 9735.

    Article  CAS  Google Scholar 

  19. Shi C., Wang G., Zhao N., Du X., and Li J., NiO nanotubes assembled in pores of porous anodic alumina and their optical absorption properties, Chem. Phys. Lett., 2008, 454(1–3): 75.

    Article  CAS  Google Scholar 

  20. Huang X.H., Tu J.P., Zhang C.Q., Chen X.T., Yuan Y.F., and Wu H.M., Spherical NiO-C composite for anode material of lithium ion batteries, Electrochim. Acta, 2007, 52(12): 4177.

    Article  CAS  Google Scholar 

  21. Bai L., Yuan F., Hu P., Yan S., Wang X., and Li S., A facile route to sea urchin-like NiO architectures, Mater. Lett., 2007, 61(8–9): 1698.

    Article  CAS  Google Scholar 

  22. Huang X.H., Tu J.P., Zhang C.Q., and Xiang J.Y., Net-structured NiO-C nanocomposite as Li-intercalation electrode material, Electrochem. Comm., 2007, 9(5): 1180.

    Article  CAS  Google Scholar 

  23. Wang Y., Lu L.Q., and Wu F.D., Indium tin oxide@carbon core-shell nanowire and jagged indium tin oxide nanowire, Nanoscale Res. Lett., 2010, 5(10): 1682.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, Y., Wang, Y. Microwave-assisted synthesis of porous nickel oxide nanostructures as anode materials for lithium-ion batteries. Rare Metals 30 (Suppl 1), 59–62 (2011). https://doi.org/10.1007/s12598-011-0238-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0238-0

Keywords

Navigation