Skip to main content
Log in

Comparative catalytic effects of NiCl2, TiC and TiN on hydrogen storage properties of LiAlH4

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Catalytic effects of NiCl2, TiC and TiN on the dehydrogenation/rehydrogenation characteristics of LiAlH4 were investigated by pressure-content-temperature (PCT), X-ray diffraction (XRD), differential scanning calorimatory (DSC), and field emission scanning electron microscopy (FESEM). The doped samples exhibit dehydrogenation at much lower temperatures. Doping with NiCl2, TiC and TiN induce a decrease in the decomposition of first step by about 50–65 °C compared to that of as received LiAlH4. Also, amount of hydrogen release is significantly higher for TiC additions than that of samples doped with TiN and NiCl2. Isothermal desorption results at 125 °C reveal that dehydrating rate of doped alanate is much faster than that of pure LiAlH4. TiC, TiN and NiCl2 dopants show the reabsorption of about 1.9 wt.%, 1.3 wt.%, and 1.1 wt.%, respectively. XRD and FESEM analyses suggest that both TiC and TiN are stable during the ball milling as well as the dehydrogenation processes. On the contrary, NiCl2 reacts and causes the partial decomposition of Li alanate during the ball milling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hashimoto K., Habazaki H., Yamasaki M., Meguro S., Sasaki T., Katagiri H., Matsui T., Fujimura K., Izumiya K., Kumagai N., and Akiyama E., Advanced materials for global carbon dioxide recycling, Mater. Sci. Eng. A, 2001, 304–306: 88.

    Google Scholar 

  2. Varin R.A., Czujko T., and Wronski Z.S., Nanomaterials for solid state hydrogen storage, Springer Science + Business Media, New York, NY, 2009.

    Book  Google Scholar 

  3. Yang J., Sudik A., Wolverton C., and Siegel D. J., High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev., 2010, 39: 656.

    Article  CAS  Google Scholar 

  4. Yang J., and Hirano S., Improving the hydrogen desorption kinetics of complex hydrides, Advanced Materials, 2009, 21: 3023.

    Article  CAS  Google Scholar 

  5. Grochala W., and Edwards P.P., Hydrides of the chemical elements for the storage and production of hydrogen. Chem. Rev., 2004, 104(3): 1283.

    Article  CAS  Google Scholar 

  6. Maelan A. J., Approaches to increasing gravimetric hydrogen storage capacities of solid hydrogen storage materials. Int. J. Hydrogen Energy, 2003, 28(8): 821.

    Article  Google Scholar 

  7. U.S. Department of Energy, Basic research needs for the hydrogen economy, Second Printing, Washington, DC, 2004. 31.

    Google Scholar 

  8. Schlapbach L., and Zuttel L.A., Hydrogen-storage materials for mobile applications, Nature, 2001, 414: 353.

    Article  CAS  Google Scholar 

  9. Iosub V., Matsunaga T., Tange K., and Ishikiriyama M., Direct synthesis of Mg (AlH4)2 and CaAlH5 crystalline compounds by ball milling and their potential as hydrogen storage materials, Int. J. Hydrogen Energy, 2009, 34(2): 906.

    Article  CAS  Google Scholar 

  10. Bogdanovic B., and Schwickardi M., Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd., 1997, 253–254: 1.

    Article  Google Scholar 

  11. Varin R.A., and Zbroniec L., Decomposition behavior of unmilled and ball milled lithium alanate (LiAlH4) including long-term storage and moisture effects, J. Alloys Compd., 2010, 504(1): 89.

    Article  CAS  Google Scholar 

  12. Fernandez J.R.A., Aguey-Zinsou F., Sykes J.M., Dornheim M., Klassen T., and Bormann R., Thermal and mechanically activated decomposition of LiAlH4, Materials Research Bulletin, 2008, 43: 1263.

    Article  Google Scholar 

  13. Sartori S., Qi X., Eigen N., Muller J., Klassen T., Dornheim M., and Hauback B. C., A search for new Mg-and K-containing alanates for hydrogen storage, Int. J. Hydrogen Energy, 2009, 34: 4582

    Article  CAS  Google Scholar 

  14. Kojima Y., Kawai Y., Matsumoto M., and Haga T., Hydrogen release of catalyzed lithium aluminum hydride by a mechanochemical reaction, J. Alloys Compd., 2008, 462: 275.

    Article  CAS  Google Scholar 

  15. Resan M., Hampton M.D., Lomness J.K., and Slattery D.K., Effect of TixAly catalysts on hydrogen storage properties of LiAlH4 and NaAlH4, Int. J. Hydrogen Energy, 2005, 30: 1417.

    Article  CAS  Google Scholar 

  16. Garner W.E., and Haycock E.W., The thermal decomposition of lithium aluminium hydride, Proc. Roy. Soc. A, 1952, 211: 335.

    Article  CAS  Google Scholar 

  17. Graetz J., and Reilly J.J., Kinetically stabilized hydrogen storage materials, Scripta Materialia, 2007, 56: 835.

    Article  CAS  Google Scholar 

  18. Liu S.S., Sun L.X., Zhang Y., Xu F., Zhang J., Chu H.L., Fan M.Q., Zhang T., Song X.Y., and Grolier J. P., Effect of ball milling time on the hydrogen storage properties of TiF3-doped LiAlH4, Int. J. Hydrogen Energy, 2009, 34: 8079.

    Article  CAS  Google Scholar 

  19. Xueping Z., Ping L., Qu X., Humail I.S., Zhang Y., and Guoqing W., Effect of different additives on the properties of lithium alanate. J. Univ. Sci. Technog. Beijing, 2008, 15(6): 786.

    Article  Google Scholar 

  20. Xueping Z., and Shenglin L., Study on hydrogen storage properties of LiAlH4, J. Alloys Compd., 2009, 481: 761.

    Article  Google Scholar 

  21. Blanchard D., Brinks H.W., Hauback B.C., Norby P., and Muller J., Isothermal decomposition of LiAlD4 with and without additives. J. Alloys Compd., 2005, 404–406: 743.

    Article  Google Scholar 

  22. Chen. J., Kuriyama N., Qu. X, H. Takeshita T., and Sakai T., Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6, J. Phys Chem. B, 2001, 105(45): 11214.

    Article  CAS  Google Scholar 

  23. Xueping Z., Ping L., Humail I.S., Fuqiang A., Guoqing W., and Qu. X., Effect of catalyst LaCl3 on hydrogen storage properties of lithium alanate (LiAlH4), Int. J. Hydrogen Energy, 2007, 32: 4957.

    Article  Google Scholar 

  24. Fernandez J.R.A., Aguey-Zinsou F., Elsaesser M., Ma X. Z., Dornheim M., Klassen T., and Bormann R., Mechanical and thermal decomposition of LiAlH4 with metal halides, Int. J. Hydrogen Energy, 2007, 32: 1033.

    Article  Google Scholar 

  25. Xueping Z., Ping L., Fuqiang A., Guoqing W., and Qu. X., Effects of Ti and Fe additives on hydrogen release, Rare Metal Materials and Engineering, 2008, 37(3): 400.

    Article  Google Scholar 

  26. Naik M., Rather S., So C.S., Hwang S.W., Kim A.R., and Nahm K.S., Thermal decomposition of LiAlH4 chemically mixed with Lithium amide and transition metal chlorides. Int. J. Hydrogen Energy, 2009, 34: 8937.

    Article  CAS  Google Scholar 

  27. Sun T., Huang C.K., Wang H., Sun L.X., and Zhu M., The effect of doping NiCl2 on the dehydrogenation properties of LiAlH4, Int. J. Hydrogen Energy, 2008, 33: 6216.

    Article  CAS  Google Scholar 

  28. Ismail M., Zhao Y., Yu X.B., and Dou S.X., Effects of NbF5 addition on the hydrogen storage properties of LiAlH4, Int. J. Hydrogen Energy, 2010, 35: 2361.

    Article  CAS  Google Scholar 

  29. Kumar L.H., Viswanathan B., and Murthy S. S., Dehydriding behavior of LiAlH4—the catalytic role of carbon nanofibers, Int. J. Hydrogen Energy, 2008, 33: 366.

    Article  Google Scholar 

  30. Alonso F., and Yus M., Hydrogenation of olefins with hydrated nickel chloride, lithium and a catalytic amount of naphthalene, Tetrahedron Letters, 1996, 37(38): 6925.

    Article  CAS  Google Scholar 

  31. Xuezhang X, Xiulin F, Kairong Y., Shouquan L., Changpin C., Qidong W., and Lixin C., Catalytic mechanism of new TiC-doped sodium alanate for hydrogen storage, J. Phys. Chem. C, 2009, 113: 20745.

    Article  Google Scholar 

  32. Ji K.W., Shim J.H., Kim S.C., Remhof A., Borgschulte A., Friedrichs O., Gremaud R., Pendoline F., Zuttel A., Cho W.Y., and Oh K.H., Catalytic effect of titanium nitride nanopowder on hydrogen desorption properties of NaAlH4 and its stability in NaAlH4, Journal of Power Sources, 2009, 192: 582.

    Article  Google Scholar 

  33. Mashkoor A., Rafi-ud-Din, Caofeng P., and Jing Z., Investigation of hydrogen storage capabilities of ZnO-based nanostructures, J. Phys. Chem. C, 2010, 114: 2560.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafi-ud-din.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafi-ud-din, Qu, X., Li, P. et al. Comparative catalytic effects of NiCl2, TiC and TiN on hydrogen storage properties of LiAlH4 . Rare Metals 30 (Suppl 1), 27–34 (2011). https://doi.org/10.1007/s12598-011-0231-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0231-7

Keywords

Navigation