Skip to main content
Log in

A study of Ni3S2 synthesized by mechanical alloying for Na/Ni3S2 cell

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To synthesize nanocrystalline Ni3S2 cathode material for Na/Ni3S2 cell with low cost nickel and sulfur elements, mechanical alloying (MA) was employed directly and with different ball powder ratios (BPRs) of 20: 1, 25: 1 and 30: 1, the mean particle size of 3.99, 2.84 and 2.75 μm can be obtained, respectively. In order to ulteriorly reduce the particle size to improve the contact areas between the active materials, the wet ball milling with the normal Hexane (C6H14) as the milling solvent was also conducted for 30 h using the ball milling machine, and the submicro Ni3S2 powder particles can be gained. The charge/discharge properties of Na/Ni3S2 cells for wet milled system were investigated at room temperature using 1 M NaCF3SO3 (sodium trifluoromethanesulfonate) dissolved in TEGDME (tetra ethylene glycol dimethyl ether) as the liquid electrolyte. And the initial charge/discharge capacity was 397 and 425 mAh/g, respectively, which indicates the small particle size of cathode materials are conductive to the discharge properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo B.K., Xu W., Wang X.Y., and Xiao L.X., Lithium-Ion Battery, Central South University Press, 2002.

  2. Olivas A., Villalpando I., Sepúlveda S., Pérez O., and Fuentes S., Synthesis and magnetic characterization of nanostructures N/WS2, where N = Ni, Co and Fe, Mater. Lett., 2007, 61(21): 4336.

    Article  CAS  Google Scholar 

  3. Ennaoui A., Fiechter S., Jaegermann W., and Tributsch H., Photoelectrochemistty of highly quantum efficient single-crystalline FeS2(pyrite), J. Electrochem. Soc., 1986, 133(1): 97.

    Article  CAS  Google Scholar 

  4. Hilton M.R., Bauer R., Didziulis S.V., Dugger M.T., Keem J.M., and Scholhamer J., Structural and tribological studies of MoS2 solid lubricant films having tailored metal-multilayer nanostructures, Surf. Coat. Technol., 1992, 53(1): 13.

    Article  CAS  Google Scholar 

  5. Scharf T.W., Prasad S.V., Dugger M.T., Kotula P.G., Goeke R.S., and Grubbs R.K., Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS, Acta Mater., 2006, 54(18): 4731.

    Article  CAS  Google Scholar 

  6. Skrabalak S.E., and Suslick K.S., Porous MoS2 synthesized by ultrasonic spray pyrolysis, J. Am. Chem. Soc, 2005, 127(28): 9990.

    Article  CAS  Google Scholar 

  7. Göbölös S., Wu Q., Delanney F., Grange P., Delmon B., and Ladrière J., The reactivity and stability of mixed-sulfide structures in unsupported MoS2-based hydrodesulfurization catalysts promoted by group VIII metals, Polyhedron, 1986, 5(1–2): 219.

    Article  Google Scholar 

  8. Iwataa Y., Sato K., Yoneda T., Miki Y., Sugimoto Y., Nishijima A., and Shimada H., Catalytic functionality of unsupported molybdenum sulfide catalysts prepared with different methods, Catal. Today, 1998, 45(1–4): 353.

    Article  Google Scholar 

  9. Han S.C., Kim H.S., Song M.S. Lee P.S., Lee J.Y., and Ahn H.J., Electrochemical properties of NiS as a cathode material for rechargeable lithium batteries prepared by mechanical alloying, J. Alloys and Compd, 2003, 349(1–2): 290.

    Article  CAS  Google Scholar 

  10. Ennaoui A., and Tributsch H., Iron disulfide solar cells, J. Sol. Cell, 1984, 13(2): 197.

    Article  CAS  Google Scholar 

  11. Zhu P.W., Qiu W.F., Liu Y.Q., Ye C., Fang G.Y., and Song Y.L., Optical limiting properties of phthalocyanine-fullerene derivatives, Appl. Phys. Lett., 2001, 78(10): 1319.

    Article  CAS  Google Scholar 

  12. Chen X.H., and Fan R., Low-temperature hydrothermal synthesis of transition metal dichalcogenides, Chem. Mater., 2001, 13(3): 802.

    Article  CAS  Google Scholar 

  13. Qian X.F., Li Y.D., Yi X., and Qian Y.T., The synthesis and morphological control of nanocrystalline pyrite nickel disulfide and cobalt disulfide, Mater. Chem. Phys., 2000, 66(1): 97.

    Article  Google Scholar 

  14. Panigrahi J.C., and Panda R.K., Transition-metal chalcogenide materials. Quick and convenient methods of synthesis of crystalline nickel (II) disulfide, Mater. Lett., 1991, 12(1–2): 112.

    Article  CAS  Google Scholar 

  15. Bonneau P.R., Shibao P.K., and Kaner P.B., Low-temperature precursor synthesis of crystalline nickel disulfide, Inorg. Chem., 1990, 29(13): 2511.

    Article  CAS  Google Scholar 

  16. An G.J., Liu C.G., Hou Y.D., Zhang X.L., and Liu Y.Q., Transition metal dichalcogenide materials: Solid-state reaction synthesis of nanocrystalline nickel disulfide, Mater. Lett., 2008, 62(17–18): 2643.

    Article  CAS  Google Scholar 

  17. Disma F., Aymard L., Dupont L., and Tarascon J.M., Effect of mechanical grinding on the lithium intercalation process in graphites and soft carbons, J. Electrochem. Soc., 1996, 143(12): 3959.

    Article  CAS  Google Scholar 

  18. Koch C.C., Materials Science and Technology-A comprehensive Treatment, Processing of Metals and Alloys, Weinheim, Germany: VCH, 15: 193.

  19. Suryanarayana C., Bibliography on Mechanical Alloying and Milling. Cambridge International Science Publishing, Cambridge, UK, 1995.

    Google Scholar 

  20. Suryanarayana C., Recent advances in the synthesis of alloy phases by mechanical alloying/milling, Metals Mater, 1996, 2: 195.

    Article  CAS  Google Scholar 

  21. Lu L., and Lai M.O., Mechanical Alloying, Boston, MA: Kluwer, 1998.

    Google Scholar 

  22. Murty B.S., and Ranganathan S., Novel materials synthesis by mechanical alloying/milling, Int. Mater. Rev., 1998, 43: 101.

    CAS  Google Scholar 

  23. Kim J.S., Ahn H.J., Pyu H.S., kim D.J., Cho G.B., Kim K.W., Nam T.H., and Ahn J.H., The discharge properties of Na/Ni3S2 cell at ambient temperature, J. Power Sources, 2008, 178(2): 852.

    Article  CAS  Google Scholar 

  24. Strauss E., Golodnitsky D., and Peled E., Study of phase changes during 500 full cycles ofLi/composite polymer electrolyte/FeS2 battery, Electrochim. Acta, 2000, 45(8–9): 1519.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inshup Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Kang, S., Kim, J. et al. A study of Ni3S2 synthesized by mechanical alloying for Na/Ni3S2 cell. Rare Metals 30 (Suppl 1), 5–10 (2011). https://doi.org/10.1007/s12598-011-0227-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0227-3

Keywords

Navigation