Skip to main content
Log in

Corrosion behaviors of a new titanium alloy TZNT for surgical implant application in Ringer’s solution

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A new near α-titanium alloy Ti12.5Zr2.5Nb2.5Ta (TZNT) for surgical implants was designed. The potentiodynamic technique was performed to investigate the corrosion behaviors of TZNT in Ringer’s solution, and Ti6Al4V, Ti6Al7Nb, and TA2 were taken as comparison. The structure of the passive film was analyzed using an X-ray photoelectron spectrometer (XPS). The results indicate that TZNT possesses better corrosion resistance, when compared with Ti6Al4V, Ti6Al7Nb, and TA2. The passive film formed on the TZNT surface is composed of oxides, such as TiO2, ZrO2, Nb2O5, and Ta2O5. The elements Zr and Ta are rich, whereas Ti and Nb are poor in the passive film. The addition of Zr, Nb, and Ta with relatively low electrochemical reaction potentials can reduce the anode activity and improve passive properties. Other than that, oxides such as ZrO2, Nb2O5, and Ta2O5 with the nobler equilibrium constants make the passive film more stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karayan A.I., Park S.W., and Lee K.M., Corrosion behavior of Ti-Ta-Nb alloys in simulated physiological media, Mater. Lett., 2008, 62: 1843.

    Article  CAS  Google Scholar 

  2. Geetha M., Singh A.K., Muraleedharan K., Gogia A.K., and Asokamani R., Effect of thermomechanical processing on microstructure of a Ti-13Nb-13Zr alloy, J. Alloys Compd., 2001, 329: 264.

    Article  CAS  Google Scholar 

  3. Geetha M., Kamachi Mudali U., Gogia A.K., Asokamani R., and Raj B., Influence of microstructure and alloying elements on corrosion behavior of Ti-13Nb-13Zr alloy, Corros. Sci., 2004, 46: 877.

    Article  CAS  Google Scholar 

  4. Khan M.A., Williams R.L., and Williams D.F., The corrosion behaviour of Ti-6Al-4V, Ti6Al-7Nb and in protein solutions, Biomaterials, 1999, 20: 631.

    Article  CAS  PubMed  Google Scholar 

  5. Wapner K.L., Implications of metallic corrosion in total knee arthroplasty, Clin. Orthop. Relat. Res., 1991, 271: 12.

    PubMed  Google Scholar 

  6. Nilson T.C., Aleixo G., Caramb R., and Guastaldi A.C., Development of Ti-Mo alloys for biomedical applications: Microstructure and electrochemical characterization, Mater. Sci. Eng. A, 2007, 452–453: 727.

    Google Scholar 

  7. Steinemann S.G., Mausli P.A., and Semlitach M., Titanium science and technology, [in] Titanium’92 Science and Technology, 1993: 2689.

  8. Li S.J., Yanga R., Lia S., Hao Y.L., Cui Y.Y., Niinomi M., and Guo Z.X., Wear characteristics of Ti-Nb-Ta-Zr and Ti-6Al-4V alloys for biomedical applications, Wear, 2004, 257: 869.

    Article  CAS  Google Scholar 

  9. Li J., Zhou L., Li Z.C., and Chen D.J., Study of a new titanium alloy for surgical implant application, Rare Met. Mater. Eng. (in Chinese), 2003, 32(5): 398.

    Google Scholar 

  10. Eisenbarth E., Velten D., Uller M.M., Thull R., and Breme J., Biocompatibility of β-stabilizing elements of titanium alloys, Biomaterials, 2004, 25: 5705.

    Article  CAS  PubMed  Google Scholar 

  11. Gurappa I., Characterization of different materials for corrosion resistance under simulated body fluid conditions, Mater. Charact., 2002, 49:73.

    Article  CAS  Google Scholar 

  12. Li G.W., Wu Z.L., Shao S.Z., and Liu Z.K., XPS studies on ZnO/Si grown by O+-assisted PLD, Mater. Sci. Technol., 2008, 16(2): 254.

    CAS  Google Scholar 

  13. Pang S.J., Shek C.H., Zhang T., Asami K., and Inoue A., Corrosion behavior of glassy Ni55Co5Nb20Ti10Zr10 alloy in 1 N HCl solution studied by potentiostatic polarization and XPS, Corros. Sci., 2006, 48: 625.

    Article  CAS  Google Scholar 

  14. Castle J.E. and Qiu H.A., Coordinated study of the passivation of alloy steel by plasma source mass spectrometry and X-ray photoelectron spectroscopy-I, Corros. Sci., 1989, 29(5):591.

    Article  CAS  Google Scholar 

  15. Wang X.Y. and Ma F.X., Inorganic and Analytical Chemistry, Chemistry Industry Press, Beijing, 2009:289.

    Google Scholar 

  16. Liang Y.J., Physical Chemistry, Metallurgy Industry Press, Beijing, 1995:310.

    Google Scholar 

  17. Masmoudi M., Capek D., Abdelhedi R., Halouani F.E., and Wery M., Application of surface response analysis to the optimisation of nitric passivation of cp titanium and Ti6Al4V, Surf. Coat. Technol., 2006, 200: 6651.

    Article  CAS  Google Scholar 

  18. Steinemann S.G. and Perren S.M., Titanium science and technology, [in] Proceedings of the Fifth International Conference on Titanium, Munich, 1984: 1327.

  19. Jonsson A.K., Niklasson G.A., and Veszelei M., Electrical properties of ZrO2 thin films, Thin Solid Films, 2002, 402:242.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Zhou, L. & Li, Z. Corrosion behaviors of a new titanium alloy TZNT for surgical implant application in Ringer’s solution. Rare Metals 29, 37–44 (2010). https://doi.org/10.1007/s12598-010-0007-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-010-0007-5

Keywords

Navigation