Skip to main content
Log in

Novel nanoporous binary Ag-Ni electrocatalysts for hydrazine oxidation

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

From an aqueous mixture of Ag(I)-EDTA complex and Ni(II) nitrate, silver and nickel particles were co-deposited on the surface of titanium substrates by the hydrothermal method using hydrazine hydrate as a reduction agent. The prepared titanium-supported nano-scale Ag and Ag-Ni particles (nano Ag/Ti, nano Ag86Ni14/Ti, nano Ag77Ni23/Ti, and nano Ag74Ni26/Ti) exhibit nanoporous 3D network textures. Their electrocatalytic activity towards hydrazine oxidation in alkaline solutions was evaluated by cyclic voltammetry and chronoamperometry. The results show that the four samples present a low onset potential of ca. −0.60 V vs. SCE and considerably high and stable anodic current densities for hydrazine oxidation. Among them, the nano Ag86Ni14/Ti electrode exhibits the highest anodic current density towards hydrazine oxidation, showing an increment of electro-active sites on the nano Ag86Ni14/Ti due to the addition of Ni to Ag particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamada K., Asazawa K., Yasuda K., Ioroib T., Tanaka H., Miyazaki Y., and Kobayashi T., Investigation of PEM type direct hydrazine fuel cell, J. Power Sources, 2003, 115: 236.

    Article  CAS  Google Scholar 

  2. Razmi-Nerbin H. and Pournaghi-Azar M.H., Nickel pentacyanonitrosylferrate film modified aluminum electrode for electrocatalytic oxidation of hydrazine, J. Solid State Electrochem., 2002, 6: 126.

    Article  CAS  Google Scholar 

  3. Rosca V. and Koper M.T.M., Electrocatalytic oxidation of hydrazine on platinum electrodes in alkaline solutions, Electrochim. Acta, 2008, 53: 5199.

    Article  CAS  Google Scholar 

  4. Li N., Tianyan Y., Gui J.Y., Erkang W., and Shaojun D., Electrocatalytic oxidation of hydrazines at a 4-pyridyl hydroquinone self-assembled platinum electrode and its application to amperometric detection in capillary electrophoresis, J. Electroanal. Chem., 1998, 448: 79.

    Article  Google Scholar 

  5. García Azorero M.D., Marcos M.L., and González Velasco J., Influence of changes in the total surface area and in the crystalline surface composition of Pt electrodes on their electrocatalytic properties with respect to the electro-oxidation of hydrazine, Electrochim. Acta, 1994, 39: 1909.

    Article  Google Scholar 

  6. Gómez R., Orts J.M., Rodes A., Feliu J.M., and Aldaz A., The electrochemistry of nitrogen-containing compounds at platinum single crystal electrodes: Part 1. Hydrazine behaviour on platinum basal planes in sulphuric acid solutions, J. Electroanal. Chem., 1993, 358: 287.

    Article  Google Scholar 

  7. Kodera T. and Honda Kita M.H., Electrochemical behaviour of hydrazine on platinum in alkaline solution, Electrochim. Acta, 1985, 30: 669.

    Article  CAS  Google Scholar 

  8. Kokkinidis G. and Jannakoudakis P.D., Influence of the electrosorption of heavy metals on hydrazine oxidation on platinum, J. Electroanal. Chem., 1981, 130: 153.

    CAS  Google Scholar 

  9. Perek M. and Bruckenstein S., An isotopic labeling investigation of the mechanism of the electrooxidation of hydrazine at platinum: An electrochemical mass spectrometric study, J. Electroanal. Chem., 1973, 47: 329.

    Google Scholar 

  10. Harrison J.A. and Khan Z.A., The oxidation of hydrazine on platinum in acid solution, J. Electroanal. Chem., 1970, 28: 131.

    Article  CAS  Google Scholar 

  11. Kořínek K., Koryta J., and Musilová M., Electro-oxidation of hydrazine on mercury, silver and gold electrodes in alkaline solutions, J. Electroanal. Chem., 1969, 21: 319.

    Article  Google Scholar 

  12. Salimi A. and Hallaj R., Adsorption and Reactivity of chlorogenic acid at a hydrophobic carbon ceramic composite electrode: Application for the amperometric detection of hydrazine, Electroanalysis, 2004, 16: 1964.

    Article  CAS  Google Scholar 

  13. Salimi A. and Abdi K., Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode prepared by two-step sol-gel technique: Application to amperometric detection of hydrazine and hydroxylamine, Talanta, 2004, 63: 475.

    Article  CAS  PubMed  Google Scholar 

  14. Pinter J.S., Brown K.L., DeYoung P.A., and Peaslee G.F., Amperometric detection of hydrazine by cyclic voltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes, Talanta, 2007, 71: 1219.

    Article  CAS  PubMed  Google Scholar 

  15. Batchelor-McAuley C., Banks C.E., Simm A.O., Jones T.G.J., and Compton R.G., The electroanalytical detection of hydrazine: A comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array, Analyst, 2006, 131: 106.

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Méndez M.A., Súarez M.F., Cortés M.T., and Sarria V.M., Electrochemical properties and electro-aggregation of silver carbonate sol on polycrystalline platinum electrode and its electrocatalytic activity towards glyphosate oxidation, Electrochem. Commun., 2007, 9: 2585.

    Article  Google Scholar 

  17. Ben Aoun S., Sook Bang G., Koga T., Nonaka Y., Sotomura T., and Taniguchi I., Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions, Electrochem. Commun., 2003, 5: 317.

    Article  Google Scholar 

  18. Ni K., Chen L., and Lu G.X., Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction, Electrochem. Commun., 2008, 10: 1027.

    Article  CAS  Google Scholar 

  19. Sleightholme A.E.S., Varcoe J.R., and Kucernak A.R., Oxygen reduction at the silver/hydroxide-exchange membrane interface, Electrochem. Commun., 2008, 10: 151.

    Article  CAS  Google Scholar 

  20. Kongkanand A. and Kuwabata S., Oxygen reduction at silver monolayer islands deposited on gold substrate, Electrochem. Commun., 2003, 5: 133.

    Article  CAS  Google Scholar 

  21. Gao G.Y., Guo D.J., Wang C., and Li H.L., Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation, Electrochem. Commun., 2007, 9: 1582.

    Article  CAS  Google Scholar 

  22. Yang G.W., Gao G.Y., Wang C., Xu C.L., and Li H.L., Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation, Carbon, 2008, 46: 747.

    Article  CAS  Google Scholar 

  23. Yi Q.F., Huang W., Zhang J.J., Liu X.P., and Li L., A novel titanium-supported nickel electrocatalyst for cyclohexanol oxidation in alkaline solutions, J. Electroanal. Chem., 2007, 610: 163.

    Article  CAS  Google Scholar 

  24. Yi Q.F., Chen A., Huang W., Zhang J.J., Liu X.P., Xu G.R., and Zhou Z.H., Titanium-supported nanoporous bimetallic Pt-Ir electrocatalysts for formic acid oxidation, Electrochem. Commun., 2007, 9: 1513.

    Article  CAS  Google Scholar 

  25. Koczkur K., Yi Q.F., and Chen A., Nanoporous Pt-Ru networks and their electrocatalytical properties, Adv. Mater., 2007, 19: 2648.

    Article  CAS  Google Scholar 

  26. Droog J.M.M., Alderliesten P.T., and Bootsma G.A., Initial stages of anodic oxidation of silver in sodium hydroxide solution studied by potential sweep voltammetry and ellipsometry, J. Electroanal. Chem., 1979, 99: 173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, Q., Li, L., Yu, W. et al. Novel nanoporous binary Ag-Ni electrocatalysts for hydrazine oxidation. Rare Metals 29, 26–31 (2010). https://doi.org/10.1007/s12598-010-0005-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-010-0005-7

Keywords

Navigation