Skip to main content
Log in

Microstructure evolution of rare earth Pr modified alumina-silicate short fiber-reinforced Al-Si metal matrix composites

  • Published:
Rare Metals Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Al-Si metal matrix composites (MMCs) reinforced with 20 vol.% alumina-silicate shot fibers (Al2O3-SiO2(sf)) were fabricated by an infiltration squeeze method. Pure Pr metal was added into these composites. The effect of Pr addition on the microstructure evolution of Al-Si MMCs was investigated by SEM, TEM, and EDS. Pr addition is favorable to make uniform microstructures with the modified eutectic Si crystal. PrAlSi phase with high contents of Pr and Si is observed on the interface between the fiber and the matrix. The addition of Pr promotes interface SiO2 reduction, and SiO2 comes from the crystallization of Al2O3-SiO2 short fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller W.S., Zhuang L., Bottema J., Wittebrood A.J., De Smet P., Haszler A., and Vieregge A., Recent development in aluminium alloys for automotive industry, Mater. Sci. Eng. A, 2000, 280(1): 37.

    Article  Google Scholar 

  2. Matinez M.A., Martin A., and Llorca J., Wear of Al-Si alloys and Al-Si/SiC composites at ambient and elevated temperatures, Scripta Metall. Mater., 1993, 28(2): 207.

    Article  Google Scholar 

  3. Natarajan N., Vijayarangan S., and Rajendran I., Wear behavior of A356/25SiCp aluminum matrix composites sliding against automobile friction material, Wear, 2006, 261(7–8):812.

    Article  CAS  Google Scholar 

  4. Yang J.B., Lin C.B., Wang T.C., and Chu H.Y., The tribological characteristics of A356.2 alloys/Gr(p) composites, Wear, 2004, 257(9–10): 941.

    Article  CAS  Google Scholar 

  5. Wu S.Q., Wei Z.S., and Tjong S.C., The mechanical and thermal expansion behavior of an Al-Si alloy composite reinforced with potassium titanate whiske, Compos. Sci. Technol., 2000, 60(15): 2873.

    Article  CAS  Google Scholar 

  6. Lasagni F., Lasagni A., Marks E., Holzapfel C., Mücklich F., and Degischer H.P., Three-dimensional characterization of “as-cast” and solution-treated AlSi12(Sr) alloys by high resolution FIB tomography, Acta Mater., 2007, 55(11): 3875.

    Article  CAS  Google Scholar 

  7. Basavakumar K.G., Mukunda P.G., and Chakraborty M., Impact toughness in Al-12Si and Al-12Si-3Cu cast alloys—Part I: effect of process variables and microstructure, Int. J. Impact Eng., 2008, 35(4): 199.

    Article  Google Scholar 

  8. Lee C., Effect of microporosity on tensile properties of A356 aluminum alloy, Mater. Sci. Eng. A, 2007, 464(1–2): 249.

    Google Scholar 

  9. Goto H. and Uchijo K., Fretting wear of Al-Si alloy matrix composites, Wear, 2004, 256(6): 630.

    Article  CAS  Google Scholar 

  10. Chang J.Y., Kim G.H., and Moon I.G., Rare earth concentration in the primary Si crystal in rare earth added Al-21 wt.% Si alloy, Scripta Mater., 1998, 39(3): 307.

    Article  CAS  Google Scholar 

  11. Garcia-Hinojosa J.A., Gonzalez C., and Juarez J.A., Effect of grain refinement treatment on the microstructure of cast Al-7Si-SiCp composites, Mater. Sci. Eng. A, 2004, 386(1–2):54.

    Google Scholar 

  12. Kumar G.S., Murty B.S., and Chakraborty M., Development of Al-Ti-C grain refiners and study of their grain refining efficiency on Al and Al-7Si alloy, J. Alloys Compd., 2005, 396(1–2): 143.

    CAS  Google Scholar 

  13. Kori S.A., Murty B.S., and Chakraborty M. Development of an efficient grain refiner for Al-7Si alloy and its modification with strontium, Mater. Sci. Eng. A, 2000, 283(1–2): 94.

    Google Scholar 

  14. Shi X.L., Mishra R.S., and Watson T.J., Elevated temperature deformation behavior of nanostructured Al-Ni-Gd-Fe alloy, Scripta Mater., 2005, 52(9): 887.

    Article  CAS  Google Scholar 

  15. Li J.C., Zhao M., and Jiang Q., Wear behavior of Al90Mn8Ce2 alloy prepared by powder metallurgy, Mater. Des., 2004, 25(6): 495.

    Google Scholar 

  16. Magdefrau N.J., Vasiliev A.L., and Aindow M., Effect of heat-treatment on the microstructure and hardness of a devitrified Al-3.0Y-3.0Gd-1.0Fe-1.0Co alloy, Scripta Mater., 2004, 51(6): 485.

    Article  CAS  Google Scholar 

  17. Xiao D.H., Wang J.N., Ding D.Y., and Yang H.L., Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy, J. Alloys Compd., 2003, 352(1–2): 84.

    Article  CAS  Google Scholar 

  18. Liu Y., Xu B., and Li W., The effect of rare earth CeO2 on the microstructure and properties of in situ TiC/Al-Si composite, Mater. Lett., 2004, 58(3–4): 432.

    Article  CAS  Google Scholar 

  19. Zhao Y.G., Qin Q.D., and Zhou W., Microstructure of the Ce-modified in situ Mg2Si/Al-Si-Cu composite, J. Alloys Compd., 2005, 389(1–2): L1.

    Article  CAS  Google Scholar 

  20. Xu C.L., Jiang Q.C., Yang Y.F., and Wang H.Y., Effect of Nd on primary silicon and eutectic silicon in hypereutectic Al-Si alloy, J. Alloys Compd., 2006, 422(1–2): L1.

    Article  CAS  Google Scholar 

  21. Yu Z., Wu G., Sun D., Chen J., and Jiang L., Rare-earth oxide coating for sub-micro particulates aluminum matrix composites, Mater. Sci. Eng. A, 2003, 357(1–2): 61.

    Google Scholar 

  22. Peng J., Han D., Li W., Du J., Xie Y., and Liu G., Study on the yield behavior of Al2O3-SiO2(sf)/Al-Si metal matrix composites, Mater. Sci. Eng. A, 2008, 486(1–2): 427.

    Google Scholar 

  23. Liu Z. and Tu T., Solidified structure and solute segregation in Al2O3/A356-La alloy composites, Rare Met., 2006, 25(3):231.

    Article  CAS  Google Scholar 

  24. Sidorov V., Gornov O., Bykov V., Son L., Ryltsev R., Uporov S., Shevchenko V., Kononenko V., Shunyaev K., Ilynykh N., Moiseev G., Kulikova T., and Sordel D., Physical properties of Al-R melts, Mater. Sci. Eng. A, 2007, 449–451:586.

    Google Scholar 

  25. Borzone G., Parodi N., Ferro R., Bros J.P., Dubes J.P., and Gambino M., Heat capacity and phase equilibria in rare earth alloy systems: R-rich R-Al alloys (R = La, Pr and Nd), J. Alloys Compd., 2001, 320(2): 242.

    Article  CAS  Google Scholar 

  26. Huang Y.S., Study on the Interface Structure and Thermal Residual Stress of Al 2O3-SiO2 (sf)/ZL109 Composite [Dissertation], South China University of Technology, Guangzhou, 1998: 30.

    Google Scholar 

  27. Liang Y.J. and Che Y.C., Handbook of Inorganic Thermochemistry Data (in Chinese), Northeast University Press, Shengyang, 1993: 253.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihua Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, J., Li, W., Huang, F. et al. Microstructure evolution of rare earth Pr modified alumina-silicate short fiber-reinforced Al-Si metal matrix composites. Rare Metals 28, 164–168 (2009). https://doi.org/10.1007/s12598-009-0033-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-009-0033-3

Keywords

Navigation