Skip to main content
Log in

Synthesis of potassium hexatitanate whiskers using hydrothermal method

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High quality potassium hexatitanate whiskers were hydrothermally synthesized in one step under moderate temperature and pressure conditions. Effects of the titanium source and reaction conditions on the hydrothermal reaction rate, product phase component, and morphology of whiskers were investigated. The results show that the reactivity of hydrated titania, anatase TiO2, and rutile TiO2 with KOH decreases in turn, and with hydrated titania as titanium source, it is difficult to obtain potassium hexatitanate whiskers with good morphology. In contrast, uniform potassium hexatitanate whiskers with a length of 10–20 μm and a diameter of 200–700 nm were obtained using anatase TiO2 as titanium source. The investigation demonstrates that the initial KOH concentration, annealing temperature and time, molar ratio of K2O/TiO2, etc. significantly affect the morphology of the as-synthesized whiskers. The optimized synthesis condition is as follows: anatase as a titanium source; 10 wt.% KOH solution; annealing temperature and time of 300°C and 5 h, respectively; K2O/TiO2 molar ratio of 5, etc. A rhombic potassium hexatitanate was prepared under the optimum condition and the whisker grew along the [110] direction. The reaction mechanism was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richardson M.O.W., Polymer Engineering Composites, Applied Science Publishers, London, 1977: 327.

    Google Scholar 

  2. Gulledge H.C., Fibrous potassium titanate—A new high temperature insulating material, Ind. Eng. Chem., 1960, 52: (2): 117.

    Article  CAS  Google Scholar 

  3. Zhou Y.X., Liu C., He M., Lu X.H., Feng X, and Yang Z.H. Splitting behavior and structural transformation process of K2Ti6O13 whiskers under hydrothermal conditions, J. Mater. Sci., 2008, 43(1): 155.

    Article  CAS  ADS  Google Scholar 

  4. Kudo A. and Sakata T., Photoluminescence of layered alkali-metal titanates (A2TinO2n+1, A; Na, K) at 300 and 77 K, J. Mater. Chem., 1993, 3(10): 1081.

    Article  CAS  Google Scholar 

  5. Shibata M., Kudo A., and Tanaka A., Photocatalytic activities of layered titanium compounds and their derivatives for H2 evolution from aqueous methanol solution, Chem. Lett., 1987, 113(8): 1017.

    Article  Google Scholar 

  6. Feng X., Lü J.Z., and Lu X.H., Applications of potassium titanate whiskers in composite materials, Acta Mater. Compos. Sin. (in Chinese), 1999, 16(4): 1.

    MATH  CAS  Google Scholar 

  7. Li W., Inorganic Whiskers (in Chinese), Chemical Industry Publisher, Beijing, 2005: 153.

    Google Scholar 

  8. Lee J.K., Lee K.H., and Kim H.J., Microstructural evolution of potassium titanate whiskers during the synthesis by the calcinations and slow-cooling method, Mater. Sci., 1996, 31(6): 5493.

    CAS  ADS  Google Scholar 

  9. Huang J.F. and Jin Z.M., The mechanism of melting synthesis of potassium hexatitanate, J. Salt Lake Sci. (in Chinese), 1994, 2(1): 67.

    Google Scholar 

  10. Bao N.Z., Feng X., and Lu X.H., Study on the formation and growth of potassium titanate whiskers, J. Mater. Sci., 2002, 37(5): 3035.

    Article  CAS  Google Scholar 

  11. Bao N.Z., Feng X., and Lu X.H., Low-temperature controllable calcination syntheses of potassium dititanate, AIChE J., 2004, 50(7):1568.

    Article  CAS  Google Scholar 

  12. Bao N.Z., Shen L.M., and Feng X., High quality and yield in potassium titanate whiskers synthesized by calcination from hydrous titania, J. Am. Ceram. Soc., 2004, 87(3): 326.

    Article  CAS  Google Scholar 

  13. Wang C.S., Feng X., and Shi Y.J., Calcination synthesis of potassium hexatitanate whiskers with low content of water soluble potassium ions, Chem. Ind. Eng. (in Chinese), 2005, 56(5): 937.

    CAS  Google Scholar 

  14. Masaki N., Uchida S., and Yamane H., Characterization of a new potassium titanate, KTiO2(OH) synthesized via hydrothermal method, Chem. Mater, 2002, 14(1): 419.

    Article  CAS  Google Scholar 

  15. Kajiwara M., The synthesis of potassium titanate fibres by flux evaporation methods, J. Mater. Sci., 1988, 23(10): 3600.

    Article  CAS  ADS  Google Scholar 

  16. Lencka M.M. and Riman R.E., Thermodynamic modeling of hydrothermal synthesis of ceramic powders, Chem. Mater., 1993, 5(1): 61.

    Article  CAS  Google Scholar 

  17. Rau H. and Rabenau A., Crystal syntheses and growth in strong acid solutions under hydrothermal conditions, Solid State Commun., 1967, 5(5): 331.

    Article  ADS  CAS  Google Scholar 

  18. Gier T.E. and Salzberg P.L., Hydrothermal Synthesis of Alkali Metal Titanates, US Patent, 2833620, 1958.

  19. Oota T. and Saito H.J., Synthesis of potassium hexatitanate fibers by the hydrothermal dehydration method, J. Cryst. Growth, 1979, 46(1): 331.

    Article  ADS  CAS  Google Scholar 

  20. Sun X., Chen X., and Li Y., Large-scale synthesis of sodium and potassium titanate nanobelts, Inorg. Chem., 2002, 41(20):4996.

    Article  PubMed  CAS  Google Scholar 

  21. Masaki N., Uchida S., and Yamane H., Hydrothermal synthesis of potassium titanates in Ti-KOH-H2O system, J. Mater. Sci., 2000, 35(6): 3307.

    Article  CAS  Google Scholar 

  22. Yahya R.B., Hayashi H., and Nagase T., Hydrothermal synthesis of potassium hexatitanates under subcritical and supercritical water conditions and its application in photocatalysis, Chem. Mater., 2001, 13(3): 842.

    Article  CAS  Google Scholar 

  23. Meng Q.H., Li X.F., and Du Z.Q., The synthesis and structure of potassium titanates with a high ratio of length to diameter, Chemistry, 2002, 33(7): 482.

    Google Scholar 

  24. Wang B.X., Shi Y., and Xue D.F., Large aspect ratio titanate nanowire prepared by monodispersed titania submicron sphere via simple wet-chemical reactions, J. Solid State Chem., 2007, 180(4): 1028.

    Article  ADS  CAS  Google Scholar 

  25. Yu H.Q., Yu J.Q., and Cheng B., Photocatalytic activity of the calcined H-titanate nanowires for photocatalytic oxidation of acetone in air, Chemosphere, 2007, 66(4): 2050.

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  26. Shi E.W., Xia C.T., and Zhong W.Z. Formation mechanism of barium titannate fine powder under hydrothermal conditions, J. Chin. Ceram. Soc. (in Chinese), 1996, 24(1): 45.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Li, C., Liang, B. et al. Synthesis of potassium hexatitanate whiskers using hydrothermal method. Rare Metals 28, 24–32 (2009). https://doi.org/10.1007/s12598-009-0006-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-009-0006-6

Keywords

Navigation