Skip to main content
Log in

Integrated production-inventory model for multi-item raw materials with exponential quality degradation: a real case study

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

Inventory issues involving quality degradation are complex to resolve and harm company performance. This study proposes an integrated production-inventory model for multi-item raw materials with exponential quality degradation. The proposed model is based on a finished product that requires several materials that degrade quality in the food industry. The proposed model’s objective function is to maximize profits using the decision variables and an optimal number of raw material shipments (\({m}_{j}\)), production time cycle (\(T\)), and the number of finished product shipments (\(n\)). The grey wolf optimizer (GWO) algorithm is proposed in this study to solve this problem. A case study was conducted on the Indonesian food industry, which produces a finished product from five raw materials. The results demonstrated that the proposed GWO algorithm could solve the production-inventory model problem. A sensitivity analysis of the research is also presented to investigate the impact of changes in the variable rate of quality degradation (\(k\)), rate of production (\(P\)), and demand (\(D\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Lambert, D.M., Cooper, M.C.: Issues in supply chain management. Ind. Mark. Manage. 29(1), 65–83 (2000)

    Article  Google Scholar 

  2. Beamon, B.M.: Supply chain design and analysis: models and methods. Int. J. Prod. Econ. 55(3), 281–294 (1998)

    Article  Google Scholar 

  3. Tutuhatunewa, A., Surachman, S., Santoso, P.B., Santoso, I.: Influence of information sharing, partnership, and collaboration on supply chain performance. Adv. Syst. Sci. Appl. 19(3), 80–92 (2019)

    Google Scholar 

  4. Ibrahim, M., Putri, M., Utama, D.M.: A literature review on reducing carbon emission from supply chain system: drivers, barriers, performance indicators, and practices. IOP Conf. Ser.: Mater. Sci. Eng. 722(1), 012034 (2020)

    Article  Google Scholar 

  5. Saha, S.: A three-echelon dual-channel supply chain model with learning effect under the return policy. J. Tek. Ind. 22(2), 155–170 (2021)

    Google Scholar 

  6. Saha, S., Chakrabarti, T.: Cost minimization policy for manufacturer in a supply chain management system with two rates of production under inflationary condition. J. Tek. Ind. 21(2), 200–212 (2020)

    Google Scholar 

  7. Agustiandi, A., Aritonang, Y.M.K., Rikardo, C.: Integrated inventory model for single vendor multi-buyer with a single item by considering warehouse and capital constraint. J. Tek. Ind. 22(1), 71–84 (2021)

    Google Scholar 

  8. Silver, E.A.: Operations research in inventory management: a review and critique. Oper. Res. 29(4), 628–645 (1981)

    Article  Google Scholar 

  9. Utama, D.M., Widodo, D.S., Ibrahim, M.F., Hidayat, K., Dewi, S.K.: The sustainable economic order quantity model: a model consider transportation, warehouse, emission carbon costs, and capacity limits. J. Phys. Conf. Ser. 1569(2), 022095 (2020)

    Article  Google Scholar 

  10. Maulana, S.K.D.B., et al.: The capacitated sustainable EOQ models: models considering tax emissions. J. Tek. Ind. 21(1), 12–21 (2020)

    Google Scholar 

  11. Dimitrios, P.: The effect of material management on firm performance. Int. J. Prod. Perf. Manag. 57, 355–369 (2008)

    Google Scholar 

  12. Masudin, I., Jannah, F.R., Utama, D.M., Restuputri, D.P.: Capacitated remanufacturing inventory model considering backorder: a case study of indonesian reverse logistics. IEEE Access 7, 143046–143057 (2019)

    Article  Google Scholar 

  13. Goyal, S., Deshmukh, S., Babu, A.S.: A model for integrated procurement-production systems. J. Oper. Res. Soc. 41(11), 1029–1035 (1990)

    Article  Google Scholar 

  14. Fauza G., Amer Y., Lee SH.: Model of an integrated procurement-production system for food products incorporating quality loss during storage time. IACSIT-Internal Association of Computer Science, (2013)

  15. Goyal, S., Deshmukh, S., Subash Babu, A.: Analysis of integrated procurement—production systems using mathematical and simulation modelling approaches. Prod. Plan. Control 2(3), 257–264 (1991)

    Article  Google Scholar 

  16. Utama, D.M., Santoso, I., Hendrawan, Y., Dania, W.A.P.: Sustainable Production-inventory model with multi-material, quality degradation, and probabilistic demand: from bibliometric analysis to a robust model. Indones. J. Sci. Technol. 8(2), 171–196 (2023)

    Article  Google Scholar 

  17. Utama, D.M., Santoso, I., Hendrawan, Y., Dania, W.A.P.: Integrated procurement-production inventory model in supply chain: a systematic review. Oper. Res. Persp. 9, 100221 (2022)

    Google Scholar 

  18. Aljazzar, S.M., Jaber, M.Y., Moussawi-Haidar, L.: Coordination of a three-level supply chain (supplier–manufacturer–retailer) with permissible delay in payments and price discounts. Appl. Math. Model. 48, 289–302 (2017)

    Article  Google Scholar 

  19. Ghourchiany, S., Bafrouei, M.: A multi-product inventory management model in a three-level supply chain with multiple members at each level. Uncertain Supply Chain Manag. 7(1), 109–120 (2019)

    Article  Google Scholar 

  20. Khan, L.R., Sarker, R.A.: An optimal batch size for a JIT manufacturing system. Comput. Ind. Eng. 42(2–4), 127–136 (2002)

    Article  Google Scholar 

  21. Chen, Z., Sarker, B.R.: Multi-vendor integrated procurement-production system under shared transportation and just-in-time delivery system. J. Oper. Res. Soc. 61(11), 1654–1666 (2010)

    Article  Google Scholar 

  22. Sarrafha, K., Rahmati, S.H.A., Niaki, S.T.A., Zaretalab, A.: A bi-objective integrated procurement, production, and distribution problem of a multi-echelon supply chain network design: a new tuned MOEA. Comput. Oper. Res. 54, 35–51 (2015)

    Article  Google Scholar 

  23. Fauza, G., Amer, Y., Lee, S.-H., Prasetyo, H.: A vendor-buyer inventory model for food products based on shelf-life pricing. Oper. Supply Chain Manag.: Int. J. 8(2), 67–73 (2015)

    Google Scholar 

  24. Rau, H., Wu, M.-Y., Wee, H.-M.: Deteriorating item inventory model with shortage due to supplier in an integrated supply chain. Int. J. Syst. Sci. 35(5), 293–303 (2004)

    Article  Google Scholar 

  25. Ouyang, L.-Y., Wu, K.-S., Yang, C.-T.: A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Comput. Ind. Eng. 51(4), 637–651 (2006)

    Article  Google Scholar 

  26. Fauza, G., Amer, Y., Lee, S.-H., Prasetyo, H.: An integrated single-vendor multi-buyer production-inventory policy for food products incorporating quality degradation. Int. J. Prod. Econ. 182, 409–417 (2016)

    Article  Google Scholar 

  27. Blackburn, J., Scudder, G.: Supply chain strategies for perishable products: the case of fresh produce. Prod. Oper. Manag. 18(2), 129–137 (2009)

    Article  Google Scholar 

  28. Fauza G., Amer Y., Lee S.-H., Prasetyo H.: (2015) An inventory model of production-inventory policy for food products considering quality loss in raw materials, In: 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp 910–914: IEEE

  29. Wang, X., Li, D.: A dynamic product quality evaluation based pricing model for perishable food supply chains. Omega 40(6), 906–917 (2012)

    Article  Google Scholar 

  30. Yang, M.-F., Tseng, W.-C.: Deteriorating inventory model for chilled food. Math. Probl. Eng. 2015, 816876 (2015)

    Google Scholar 

  31. Chang, C.-T., Teng, J.-T., Goyal, S.K.: Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. Int. J. Prod. Econ. 123(1), 62–68 (2010)

    Article  Google Scholar 

  32. Utama D.M.: (2021) Hybrid grey wolf algorithm for energy-efficient scheduling with sequence-dependent setup times: a case study," In: the 6th international conference on industrial, mechanical, electrical and chemical engineering ICIMECE 2020, Solo, Indonesia, 1096(1), 012116

  33. Al-Imron, C.N., Utama, D.M., Dewi, S.K.: An energy-efficient no idle permutations flow shop scheduling problem using grey wolf optimizer algorithm. J. Ilmiah Tek. Ind. 21(1), 1–10 (2022)

    Google Scholar 

  34. Utama, D.M., Kusuma, I.R., Amallynda, I., Baroto, T., Jauhari, W.A.: A single-vendor multi-buyer inventory model with multiple raw material and quality degradation: a case study on agri-food industry. Results Control Optim. 14, 100353 (2024)

    Article  Google Scholar 

  35. Utama, D.M., Widodo, D.S., Ibrahim, M.F., Hidayat, K., Dewi, S.K.: The sustainable economic order quantity model: a model consider transportation, warehouse, emission carbon costs, and capacity limits. J. Phys. Conf. Ser. 1569, 022095 (2020)

    Article  Google Scholar 

  36. Koumanakos, D.P.: The effect of inventory management on firm performance. Int. J. Product. Perform. Manag. 57(5), 355–369 (2008)

    Article  Google Scholar 

  37. Harris, F.W.: How many parts to make at once. Mag. Manag. 10(2), 135–136 (1913)

    Google Scholar 

  38. Taft, E.W.: The most economical production lot. Iron Age 101(18), 1410–1412 (1918)

    Google Scholar 

  39. Goyal, S.K.: An integrated inventory model for a single product system. J. Oper. Res. Soc. 28(3), 539–545 (1977)

    Article  Google Scholar 

  40. Ghare, P.: A model for an exponentially decaying inventory. J. Ind. Eng. 14, 238–243 (1963)

    Google Scholar 

  41. Covert, R.P., Philip, G.C.: An EOQ model for items with weibull distribution deterioration. A I I E Trans. 5(4), 323–326 (1973)

    Google Scholar 

  42. Misra, R.B.: Optimum production lot size model for a system with deteriorating inventory. Int. J. Prod. Res. 13(5), 495–505 (1975)

    Article  Google Scholar 

  43. Wu, K.S., Ouyang, L.Y., Yang, C.T.: An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging,". Int. J. Prod. Econ. 101(2), 369–384 (2006)

    Article  Google Scholar 

  44. Geetha, K., Uthayakumar, R.: Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments. J. Comput. Appl. Math. 233(10), 2492–2505 (2010)

    Article  Google Scholar 

  45. Maihami, R., Kamalabadi, I.N.: Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand. Int. J. Prod. Econ. 136(1), 116–122 (2012)

    Article  Google Scholar 

  46. Shah, N.H., Soni, H.N., Patel, K.A.: Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates. Omega 41(2), 421–430 (2013)

    Article  Google Scholar 

  47. Soni, H.N.: Optimal replenishment policies for non-instantaneous deteriorating items with price and stock sensitive demand under permissible delay in payment. Int. J. Prod. Econ. 146(1), 259–268 (2013)

    Article  Google Scholar 

  48. Chung, K.-J., Eduardo Cárdenas-Barrón, L., Ting, P.-S.: An inventory model with non-instantaneous receipt and exponentially deteriorating items for an integrated three layer supply chain system under two levels of trade credit. Int. J. Prod. Econ. 155, 310–317 (2014)

    Article  Google Scholar 

  49. Wu, J., Skouri, K., Teng, J.-T., Ouyang, L.-Y.: A note on “optimal replenishment policies for non-instantaneous deteriorating items with price and stock sensitive demand under permissible delay in payment.” Int. J. Prod. Econ. 155, 324–3294 (2014)

    Article  Google Scholar 

  50. Fauza, G., Amer, Y., Lee, S.-H.: Model of an integrated procurement-production system for food products incorporating quality loss during storage time. Int. J. Mater. Mech. Manuf. 1(1), 17–21 (2013)

    Google Scholar 

  51. Park, K.S.: An integrated production-inventory model for decaying raw materials. Int. J. Syst. Sci. 14(7), 801–806 (1983)

    Article  Google Scholar 

  52. Goyal, S.K., Deshmukh, S.: Integrated procurement-production systems: a review. Eur. J. Oper. Res. 62(1), 1–10 (1992)

    Article  Google Scholar 

  53. Utama, D.M., Kholik, H.M., Mulya, A.F.: Integrated procurement-production inventory model with two-stage production. Jurnal Teknik Industri 21(2), 185–199 (2020)

    Article  Google Scholar 

  54. Indajit R.E., Djokopranoto R., "Konsep Manajemen Supply Chain: Strategi Mengelola Manajemen Rantai Pasokan bagi Perusahaan Modern di Indonesia," ed: PT Gramedia Widiasarana Indonesia. Jakarta, (2003)

  55. Mansur, A., Handayani, D.I., Wangsa, I.D., Utama, D.M., Jauhari, W.A.: A mixed-integer linear programming model for sustainable blood supply chain problems with shelf-life time and multiple blood types. Decis. Anal. J. 8, 100279 (2023)

    Article  Google Scholar 

  56. Sibarani, E., Bu’ulolo, F., Sebayang, D.: Penggunaan Metode EOQ dan EPQ dalam Meminimumkan Biaya Persediaan Minyak Sawit Mentah (CPO)(Studi Kasus: PT. XYZ). Saintia Matematika 1(4), 337–347 (2013)

    Google Scholar 

  57. Goyal, S.K.: An integrated inventory model for a single product system. Oper. Res. Q. 28(3), 539–545 (1977)

    Article  Google Scholar 

  58. Korgaonker, M.G.: Integrated production inventory policies for multistage multiproduct batch production systems. J. Oper. Res. Soc. 30(4), 355–362 (1979)

    Article  Google Scholar 

  59. Schwarz, L.B., Schrage, L.: Optimal and system myopic policies for multi-echelon production/inventory assembly systems. Manage. Sci. 21(11), 1285–1294 (1975)

    Article  Google Scholar 

  60. Goyal, S., Deshmukh, S.: Integrated procurement-production system in a just-in-time environment-modelling and analysis. Prod. Plan. Control 8(1), 31–36 (1997)

    Article  Google Scholar 

  61. Crowston, W.B., Wagner, M., Williams, J.F.: Economic lot size determination in multi-stage assembly systems. Manage. Sci. 19(5), 517–527 (1973)

    Article  Google Scholar 

  62. Fauza, G., Amer, Y., Lee, S.-H.: Model of an integrated procurement-production system for food products incorporating quality loss during storage time. Int. J. Mater. Mech. Manuf. 1(1), 17–21 (2013)

    Google Scholar 

  63. Priyan, S., Palanivel, M., Uthayakumar, R.: Integrated procurement-production inventory model for defective items with variable setup and ordering cost. Opsearch 52(4), 692–713 (2015)

    Article  Google Scholar 

  64. Gharaei, A., Karimi, M., Hoseini Shekarabi, S.A.: Joint economic lot-sizing in multi-product multi-level integrated supply chains: generalized benders decomposition. Int. J. Syst. Sci.: Oper. Log. 7(4), 309–325 (2020)

    Google Scholar 

  65. Mungan, D., Yu, J., Sarker, B.R.: Manufacturing lot-sizing, procurement and delivery schedules over a finite planning horizon. Int. J. Prod. Res. 48(12), 3619–3636 (2010)

    Article  Google Scholar 

  66. AlDurgam, M., Adegbola, K., Glock, C.H.: A single-vendor single-manufacturer integrated inventory model with stochastic demand and variable production rate. Int. J. Prod. Econ. 191, 335–350 (2017)

    Article  Google Scholar 

  67. Kundu, S., Chakrabarti, T.: An integrated multi-stage supply chain inventory model with imperfect production process. Int. J. Ind. Eng. Comput. 6(4), 568–580 (2015)

    Google Scholar 

  68. Banerjee, A., Kim, S.-L., Burton, J.: Supply chain coordination through effective multi-stage inventory linkages in a JIT environment. Int. J. Prod. Econ. 108(1), 271–280 (2007)

    Article  Google Scholar 

  69. Sana, S.S., Chedid, J.A., Navarro, K.S.: A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items. Appl. Math. Comput. 229, 139–150 (2014)

    Google Scholar 

  70. Chang C.-C., Lu C.-J., Yang C.-T.: Multistage supply chain production–inventory model with collaborative preservation technology investment, Scientia Iranica, vol. Article in press, (2020)

  71. Lu, C.-J., Lee, T.-S., Gu, M., Yang, C.-T.: A multistage sustainable production-inventory model with carbon emission reduction and price-dependent demand under stackelberg game. Appl. Sci. 10(14), 4878 (2020)

    Article  Google Scholar 

  72. Giri, B., Masanta, M.: Developing a closed-loop supply chain model with price and quality dependent demand and learning in production in a stochastic environment. Int. J. Syst. Sci.: Oper. Log. 7(2), 147–163 (2020)

    Google Scholar 

  73. Islam, S.M.S., Hoque, M.A., Hamzah, N.: Single-supplier single-manufacturer multi-retailer consignment policy for retailers’ generalized demand distributions. Int. J. Prod. Econ. 184, 157–167 (2017)

    Article  Google Scholar 

  74. Setiawan, R., Widodo, S., Endrayanto, I., Indarsih.: Analysis of the single-vendor–multi-buyer inventory model for imperfect quality with controllable lead time. Int. J. Appl. Math. 51(3), 645 (2021)

    Google Scholar 

  75. Omar, M., Zulkipli, H.: A single-vendor multi-buyer integrated production-inventory system with stock-dependent demand. Int. J. Syst. Sci.: Oper. Log. 5(3), 204–210 (2018)

    Google Scholar 

  76. Srinivas, C.: Consignment inventory simulation model for single vendor-multi buyers in a supply chain. Int. J. Adv. Res. Eng. Technol. 10(2), 341–349 (2019)

    Article  Google Scholar 

  77. Fauza, G., Prasetyo, H., Amanto, B.: Development of an integrated production-inventory model for food products considering exponential perceived value loss. IOP Conf. Ser.: Mater. Sci. Eng. 403(1), 012050 (2018)

    Article  Google Scholar 

  78. Fauza, G., Prasetyo, H., Dania, N.K., Amanto, B.S.: Development of food inventory model in an integrated vendor-buyer system: case study in food industry. AIP Conf. Proc. 1977(1), 020053 (2018)

    Article  Google Scholar 

  79. Vaziri, S., Zaretalab, A., Esmaeili, M., Niaki, S.T.A.: An integrated production and procurement design for a multi-period multi-product manufacturing system with machine assignment and warehouse constraint. Appl. Soft Comput. 70, 238–262 (2018)

    Article  Google Scholar 

  80. Yu, Y., Wang, Z., Zhang, Q., Yang, W., Shi, M.: Hybrid genetic algorithm-based on optimization of multi-echelon inventory structure design, pp. 856–859. Atlantis Press, Atlantis Press (2012)

    Google Scholar 

  81. Pourakbar, M., Farahani, R.Z., Asgari, N.: A joint economic lot-size model for an integrated supply network using genetic algorithm. Appl. Math. Comput. 189(1), 583–596 (2007)

    Google Scholar 

  82. Fang, C., Liu, X., Pardalos, P.M., Pei, J.: Optimization for a three-stage production system in the internet of things: procurement, production and product recovery, and acquisition. Int. J. Adv. Manuf. Technol. 83(5–8), 689–710 (2016)

    Article  Google Scholar 

  83. Ruidas, S., Seikh, M.R., Nayak, P.K., Tseng, M.-L.: An interval-valued green production inventory model under controllable carbon emissions and green subsidy via particle swarm optimization. Soft. Comput. 27(14), 9709–9733 (2023)

    Article  Google Scholar 

  84. Utama, D.M., Dewi, S.K., Dwi Budi Maulana, S.K.: Optimization of joint economic lot size model for vendor-buyer with exponential quality degradation and transportation by chimp optimization algorithm. Complexity 2022, 9619530 (2022)

    Article  Google Scholar 

  85. Manna, A.K., Das, S., Shaikh, A.A., Bhunia, A.K., Moon, I.: Carbon emission controlled investment and warranty policy based production inventory model via meta-heuristic algorithms. Comput. Ind. Eng. 177, 109001 (2023)

    Article  Google Scholar 

  86. Akhtar, M., Duary, A., Manna, A.K., Shaikh, A.A., Bhunia, A.K.: An application of tournament differential evolution algorithm in production inventory model with green level and expiry time dependent demand. Artif. Intell. Rev. 56(5), 4137–4170 (2023)

    Article  Google Scholar 

  87. Fauza, G., Prasetyo, H., Amanto, B.: An integrated production-inventory model for food products adopting a general raw material procurement policy. 7th AIC-ICMR Sci. Eng. Banda Aceh Indonesia 352(1), 012013 (2018)

    Google Scholar 

  88. Dania N.K, Fauza G., Amanto B.S., Prasetyo H.: Pengembangan Model Persediaan Produk Pangan Terintegrasi untuk Mengurangi Resiko Penurunan Kualitas pada Sistem Produksi Dua Tahap (Studi Kasus: PT. So Good Food Manufacturing Boyolali), 2018.

  89. Qiao, A., Choi, S., Wang, X.: Lot size optimization in two-stage manufacturer-supplier production under carbon management constraints. J. Clean. Prod. 224, 523–535 (2019)

    Article  Google Scholar 

  90. Karabağ, O., Tan, B.: Purchasing, production, and sales strategies for a production system with limited capacity, fluctuating sales and purchasing prices. IISE Trans. 51(9), 921–942 (2019)

    Article  Google Scholar 

  91. Gharaei, A., Karimi, M., Hoseini Shekarabi, S.A.: Joint economic lot-sizing in multi-product multi-level integrated supply chains: generalized benders decomposition. Int. J. Syst. Sci. Oper. Log. 7(4), 309–325 (2020)

    Google Scholar 

  92. Huynh, P., Yenradee, P.: Vendor managed inventory for multi-vendor single-manufacturer supply chain: a case study of instant noodle industry. Eng. J. 24(6), 91–107 (2020)

    Article  Google Scholar 

  93. Shafiee, F., Kazemi, A., Chaghooshi, A.J., Sazvar, Z., Mahdiraji, H.A.: A robust multi-objective optimization model for inventory and production management with environmental and social consideration: a real case of dairy industry. J. Clean. Prod. 294, 126230 (2021)

    Article  Google Scholar 

  94. Utama, D.M., Maulana, S.K.D.B., Baroto, T., Dewi, S.K.: Optimizing vendor-buyer inventory model with exponential quality degradation for food product using grey wolf optimizer. Int. J. Food Syst. Dyn. 13(2), 225–246 (2022)

    Google Scholar 

  95. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

Download references

Funding

There has been no significant financial support for this work that could have influenced its outcome.

Author information

Authors and Affiliations

Authors

Contributions

DMU: Conceptualization Model, Methodology, Data curation, Calculation, Writing-Original draft preparation, and Revision. FFA: Conceptualization, Writing- Reviewing, Revision and Editing, Supervision. IA: Conceptualization Model and Methodology. TB: Conceptualization Model and Methodology.

Corresponding author

Correspondence to Dana Marsetiya Utama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval and consent to participate

We express our consent to participate in this article and know, respect, and comply with the ethical requirements for the document’s publication.

Consent for publication

We confirm that the manuscript has been read and approved by all named authors and that no other persons satisfy the criteria for authorship but are not listed. We further confirm that all have approved the order of authors listed in the manuscript of us.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

This section presents the calculation of the average inventory of finished products and each material. Based on the optimization results with the GWO algorithm, the optimal decision for the production cycle (T) is 0.7273, and the frequency of finished product delivery (n) is once. Meanwhile, the delivery of raw materials 1–5 (\({{\varvec{m}}}_{1}-{{\varvec{m}}}_{5}\)) are 10, 4, 6, 1, and 1, respectively. The formula for the average inventory of finished products is presented in Eq. (20).

$$I_{1} = \frac{DT}{{2n}}\left( {\frac{D}{P}\left( {2 - n} \right) + \left( {n - 1} \right)} \right)$$
(20)

Based on this formula, the average finished product inventory is as follows:

$$I_{1} = \frac{{7020{*}0.7273}}{2*1}\left( {\frac{7020}{{7500}}\left( {2 - 1} \right) + \left( {1 - 1} \right)} \right) = 2,389,4$$

It shows that the average inventory of finished products is 2,389.4 product units. Meanwhile, the formula for the average inventory of each raw material is presented in Eq. (21).

$$I_{{0_{j} }} = \frac{{\lambda_{j} D^{2} T}}{{2m_{j} \lambda_{j} P}}$$
(21)

Based on this formula, the average inventory of each raw material is as follows:

$$I_{{0_{1} }} = \frac{{0.293*7020^{2} *0.7273}}{2*10*0.293*7500} = 238.94$$
$$I_{{0_{2} }} = \frac{{0.43*7020^{2} *0.7273}}{2*4*0.43*7500} = 597.36$$
$$I_{{0_{3} }} = \frac{{0.004*7020^{2} *0.7273}}{2*6*0.004*7500} = { 398}.{24}$$
$$I_{{0_{4} }} = \frac{{32*7020^{2} *0.7273}}{2*1*32*7500} = { 2389}.{44}$$
$$I_{{0_{5} }} = \frac{{1*7020^{2} *0.7273}}{2*1*1*7500} = 2389.44$$

These results show that the average inventory of each raw material 1 to 5 is 238.94, 597.36, 398.24, 2389.44, and 2389.44, respectively.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utama, D.M., Abdullah, F.F., Amallynda, I. et al. Integrated production-inventory model for multi-item raw materials with exponential quality degradation: a real case study. OPSEARCH (2024). https://doi.org/10.1007/s12597-024-00759-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12597-024-00759-z

Keywords

Navigation