Skip to main content
Log in

Cost scrutiny of discrete-time priority queue with cluster arrival and Bernoulli feedback

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

This work describes the economic feasibility of a single server discrete-time queueing model, (Geo/G/1) where interarrival times have a geometric distribution, and service times have a general distribution. This work is motivated by the case of discrete-time queueing models under priority scheme for solving many congestion issues of the telecommunication system wherein few calls are treated as prioritized calls and system manager may handle it properly. Herein a state-dependent arrival policy is used. It is assumed that the clients arrive in groups of varying sizes, and incorporates only one serverĀ queueing system with unlimited capacity. Under a discrete-time system with Markovian service practice, clients are serviced one at a time. If a client is dissatisfied with his service, he will most likely be directed back to the front of the queue. This concept is commonly referred to as Bernoulli feedback (BF) in queueing scenario. Just after every service, it is presumed that the server either starts to identifyĀ the next client to be serviced with some probability, or the server starts a solo vacation procedure with its complementary probability and this process is referred as Bernoulli vacation (BV). In addition, preferred and impatient clients are examined too. We investigate the Markov chain that underpins the queueing system in question, and its normalizing condition. The average number of consumers in the queue and the system are found using a generating function method. The numeral expositions are ascertained to delve the impact of different parameters on various performance metrics which can give information to system management in order to monitor the system's functioning condition and decrease congestion. We then used direct search method (DSM) and Particle Swarm Optimization (PSO) approaches to present a comparative study to assist system administrators or decision-makers by economically regulating the system. Furthermore, the results of the provided model are contrasted to those of a soft computing approach termed as ANFIS (Adaptive Neuro-Fuzzy Inference System).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.Ā 1
Fig.Ā 2
Fig.Ā 3
Fig.Ā 4
Fig.Ā 5
Fig.Ā 6
Fig.Ā 7
Fig.Ā 8

Similar content being viewed by others

Data availability

The real data taken in Sect.Ā 7 to support the findings of this study are openly available in [27]. And for rest of theĀ data, the authors declare that this research is an observational study, does not involve any surveys or participants in any capacity and thus, no ethical approval is required.

References

  1. Woodward, M.E.: Communication and Computer Networks: Modelling with Discrete-Time Queues. IEEE Computer Society Press, California (1994)

    Google ScholarĀ 

  2. Chidera I.A., Obinna C.N., Cosmas I.A.: Call drop minimization techniques for handover calls in mobile cellular networks. Int. J. Sci. Eng. Res. 6(3), 1426ā€“1431 (2015)

    Google ScholarĀ 

  3. Nandy, N., Pradhan, S.: Stationary joint distribution of a discrete-time group-arrival and batch-size-dependent service queue with single and multiple vacation. Commun. Stat. Theory Methods (2021). https://doi.org/10.1080/03610926.2021.1966469

    ArticleĀ  Google ScholarĀ 

  4. Legros, B.: Dimensioning a queue with state-dependent arrival rates. Comput. Oper. Res. (2020). https://doi.org/10.1016/j.cor.2020.105179

    ArticleĀ  Google ScholarĀ 

  5. Atencia, I., GalƔn-Garcƭa, J.L., Aguilera-Venegas, G., Rodrƭguez-Cielos, P., GalƔn-Garcƭa, M.Ɓ., Padilla-Domƭnguez, Y.: A discrete-time queueing system with three different strategies. J. Comput. Appl. Math. 393, 113486 (2021)

    ArticleĀ  Google ScholarĀ 

  6. Malik, G., Upadhyaya, S., Sharma, S.: Cost inspection of a Geo/G/1 retrial model using particle swarm optimization and Genetic algorithm. Ain Shams Eng. J. 12(2), 2241ā€“2254 (2021)

    ArticleĀ  Google ScholarĀ 

  7. Upadhyaya, S.: Cost optimisation of a discrete-time retrial queue with Bernoulli feedback and starting failure. Int. J. Ind. Syst. Eng. 36(2), 165ā€“196 (2020)

    Google ScholarĀ 

  8. Pla, V., Alfa, A.S., Martinez-Bauset, J., Casares-Giner, V.: Discrete-time analysis of cognitive radio networks with nonsaturated source of secondary users. Wirel. Commun. Mob. Comput. 2019, 1ā€“12 (2019)

    ArticleĀ  Google ScholarĀ 

  9. Rakhee, S.: Discrete-time analysis of communication networks with second optional service and negative user arrivals. In: International Conference on Communication and Intelligent Systems (2020), pp. 243ā€“257. https://doi.org/10.1007/978-981-15-3325-9_19

  10. Lan, S., Tang, Y.: An unreliable discrete-time retrial queue with probabilistic preemptive priority, balking customers and replacements of repair times. AIMS Math. 5(5), 4322ā€“4344 (2020)

    ArticleĀ  Google ScholarĀ 

  11. Chen Y., Cai L., Wei C.: A discrete-time Geo/G/1 retrial queue with balking customer, second optional service, Bernoulli vacation and general retrial time. In: Fuzzy Systems & Operations Research and Management, vol. 367, pp. 255ā€“266 (2016).

  12. Atencia, I., Galan-Garcia, J.L., Aguilera-Venegas, G., et al.: An arriving decision problem in a discrete-time queueing system. Adv. Comput. Math. 45, 1863ā€“1879 (2019). https://doi.org/10.1007/s10444-019-09663-3

    ArticleĀ  Google ScholarĀ 

  13. Gao, S., Liu, Z.: A repairable GeoX/G/1 retrial queue with Bernoulli feedback and impatient customers. Acta Math. Appl. Sin. E. 30, 205ā€“222 (2014)

    ArticleĀ  Google ScholarĀ 

  14. Upadhyay, S.: Performance analysis of a discrete-time retrial queue with bernoulli feedback, starting failure and single vacation policy. In: Recent Trends in Mathematical Modeling and High-Performance Computing, pp. 365ā€“379 (2021)

  15. Gao, S., Wang, X.: Analysis of a single server retrial queue with server vacation and two waiting buffers based on ATM networks. Math. Probl. Eng. 2019, 1ā€“14 (2019)

    Google ScholarĀ 

  16. Kim, J., Kim, B.: A survey of retrial queueing systems. Ann. Oper. Res. 247(1), 3ā€“36 (2016)

    ArticleĀ  Google ScholarĀ 

  17. Chen, P., Zhou, Y., Li, C.: Discrete-time retrial queue with Bernoulli vacation, preemptive resume and feedback customers. J. Ind. Eng. Manag. 8(4), 1236ā€“1250 (2015)

    Google ScholarĀ 

  18. Schafer, R., Buck, J.R., Oppenheim, A.V.: Discrete-Time Signal Processing, 2nd edn. Prentice Hall, Englewood Cliffs (1999)

    Google ScholarĀ 

  19. Hunter, J.J.: Mathematical Techniques of Applied Probability, Discrete-time Models: Techniques and Applications, vol. 2. Academic Press, New York (1983)

    Google ScholarĀ 

  20. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23, 665ā€“685 (1993). https://doi.org/10.1109/21.256541

    ArticleĀ  Google ScholarĀ 

  21. Lewis, R.M., Torczon, V., Trosset, M.: Direct search methods: then and now. J. Comput. Appl. Math. 124(1ā€“2), 191ā€“207 (2000)

    ArticleĀ  Google ScholarĀ 

  22. Ostad-Ali-Askari, K., Shayannejad, M.: Computation of subsurface drain spacing in the unsteady conditions using Artificial Neural Networks (ANN). Appl Water Sci 11, 21 (2021)

    ArticleĀ  Google ScholarĀ 

  23. Vaishnawi, M., Upadhyaya, S., Kulshrestha, R.: Optimal cost analysis for discrete-time recurrent queue with Bernoulli feedback and emergency vacation. Int. J. Appl. Comput. Math. 8(5), 1ā€“31 (2022)

    ArticleĀ  Google ScholarĀ 

  24. Malik, G., Upadhyaya S.: Performance modelling of a discrete-time retrial queue with preferred and impatient customers, Bernoulli vacation and second optional service. In: Recent Trends in Mathematical Modeling and High Performance Computing, pp. 331ā€“345 (2021)

  25. Upadhyaya, S., Malik, G., Sharma, R.: Neuro-fuzzy computing and optimization results for batch discrete-time retrial queue. Int. J. Math. Oper. Res. 23(1), 119ā€“146 (2022)

    ArticleĀ  Google ScholarĀ 

  26. Rajasudha, R., Arumuganathan, R., Dharmaraja, S.: Performance analysis of discrete-time GeoX/G/1 retrial queue with various vacation policies and impatient customers. RAIRO-Oper. Res. 56, 1089ā€“1117 (2022)

    ArticleĀ  Google ScholarĀ 

  27. Sztrik, J., TĆ³th, A., Danilyuk, E., Moiseeva, S.: Analysis of retrial queueing system m/g/1 with impatient customers, collisions and unreliable server using simulation. In: Information Technologies and Mathematical Modelling. Queueing Theory and Applications, pp. 291ā€“303 (2021)

Download references

Acknowledgements

The authors are grateful to anonymous reviewers for their insightful comments and suggestions. The expertise of all has improved this article in innumerable ways and saved us from many errors.

Funding

No funding was received while conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All three authors have contributed equally in the development of this article.

Corresponding author

Correspondence to Vaishnawi Shree.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors give their consent for the publication of identifiable details, which can include images/data and/or details within the text to be published in the above journal and article. We confirm that we have seen and been given the opportunity to read both the material and the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Notations used in above equations

Appendix: Notations used in above equations

$$F_{\mathcalligra{i}} (1) = 1 - \mathcalligra{p}_{\mathcalligra{i}} \Theta \alpha ;\quad \mathcalligra{i} = 1,2;\quad F^{\prime}_{\mathcalligra{i}} (1) = \mathcalligra{p}_{\mathcalligra{i}} \Theta \overline{\alpha } E[{\rm X}];\quad \mathcalligra{i} = 1,2;\quad F^{\prime\prime}_{\mathcalligra{i}} (1) = \mathcalligra{p}_{\mathcalligra{i}} \Theta \overline{\alpha } E[{\rm X}^{2} ];\quad \mathcalligra{i} = 1,2$$
$$T_{1} (1) = F(1) = \overline{{\mathcalligra{p}_{1} }} + \mathcalligra{p}_{1} \overline{\Theta } + \Theta \overline{\alpha } \left( {\overline{\mathcalligra{w}} \mathcalligra{p}_{1} + \mathcalligra{w}\overline{{\mathcalligra{p}_{1} }} a_{0} } \right);\quad T^{\prime}_{1} (1) = \Theta \overline{\alpha } \left( {\overline{\mathcalligra{w}} \mathcalligra{p}_{1} + \mathcalligra{w}\overline{{\mathcalligra{p}_{1} }} a_{0} } \right)E[{\rm X}];$$
$$T^{\prime\prime}_{1} (1) = \Theta \overline{\alpha } \left( {\overline{\mathcalligra{w}} \mathcalligra{p}_{1} + \mathcalligra{w}\overline{{\mathcalligra{p}_{1} }} {\text{a}}_{0} } \right)E[{\rm X}^{2} ];\quad \pounds_{1} (1) = \overline{\mathcalligra{r}} + \mathcalligra{r}T_{1} (1);\quad \pounds_{2} (1) = \overline{{\mathcalligra{p}_{1} }} \mathcalligra{q} + \overline{{\mathcalligra{p}_{2} }} \overline{\mathcalligra{q}} \frac{{{\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}};$$
$$\mathcal{H}^{\prime}(1) = \Theta \overline{\alpha } \left( {\overline{\mathcalligra{w}} \mathcalligra{p}_{1} + \mathcalligra{w}\overline{{\mathcalligra{p}_{1} }} {\text{a}}_{0} } \right)\left( {E[{\rm X}] - 1} \right);\quad F^{\prime\prime}(1) = \Theta \overline{\alpha } \left( {\overline{\mathcalligra{w}} \mathcalligra{p}_{1} + \mathcalligra{w}\overline{{\mathcalligra{p}_{1} }} {\text{a}}_{0} } \right)\left\{ {E[{\rm X}^{2} ] + 2\left( {1 - E[{\rm X}]} \right)} \right\};$$
$$\pounds(1) = \pounds_{1} (1)\pounds_{2} (1);\quad \pounds^{\prime}(1) = \pounds^{\prime}_{1} (1)\pounds_{2} (1) + \pounds_{1} (1)\pounds^{\prime}_{2} (1);\quad \pounds^{\prime\prime}(1) = \pounds^{\prime\prime}_{1} (1)\pounds_{2} (1) + 2\pounds^{\prime}_{1} (1)\pounds^{\prime}_{2} (1) + \pounds_{1} (1)\pounds^{\prime\prime}_{2} (1);$$
$$\pounds^{\prime}_{1} (1) = \frac{{\mathcalligra{p}_{1} \Theta \mathcalligra{r}}}{{\left[ {F_{2} (1)} \right]^{2} }}\left[ {F_{2} (1)\left\{ \begin{gathered} 2\alpha {\varvec{S}}_{2} (F_{1} (1))T_{1} (1) + \alpha \varvec{S}^{\prime}_{2} (F_{1} (1))F^{\prime}_{1} (1)T_{1} (1) \hfill \\ - \overline{\alpha } E[{\rm X}]{\varvec{S}}_{2} (F_{1} (1))T_{1} (1) + \alpha {\varvec{S}}_{2} (F_{1} (1))T^{\prime}_{1} (1) \hfill \\ \end{gathered} \right\} - \alpha {\varvec{S}}_{2} (F_{1} (1))T_{1} (1)F^{\prime}_{2} (1)} \right];$$
$$\pounds^{\prime}_{2} (1) = \overline{{\mathcalligra{p}_{1} }} \mathcalligra{q}\mathcalligra{w} + \frac{{\overline{{\mathcalligra{p}_{2} }} \overline{\mathcalligra{q}} }}{{\left[ {F_{2} (1)} \right]^{2} }}\left[ {F_{2} (1)\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1)F_{2} (1) - {\varvec{S}}_{3} (F_{2} (1))F(1)F^{\prime}_{2} (1)} \right];$$
$$\begin{aligned} \pounds^{\prime\prime}_{1} (1) & = \frac{{\mathcalligra{p}_{1} \Theta \mathcalligra{r}}}{{\left[ {F_{2} (1)} \right]^{3} }}\left[ \begin{aligned} & F_{2} (1)\left\{ {F_{2} (1)N^{\prime\prime}(1) - \, \alpha {\varvec{S}}_{2} (F_{1} (1))T_{1} (1)F^{\prime\prime}_{2} (1)} \right\} \\ & - \, 2F^{\prime}_{2} (1)\left\{ {F_{2} (1)N^{\prime}(1) - \, \alpha {\varvec{S}}_{2} (F_{1} (1))T_{1} (1)} \right\} \\ \end{aligned} \right]\quad {\text{where}} \\ N^{\prime}(1) & = 2\alpha {\varvec{S}}_{2} (F_{1} (1))T_{1} (1) - \overline{\alpha } E[{\rm X}]{\varvec{S}}_{2} (F_{1} (1))T_{1} (1) + \alpha \varvec{S}^{\prime}_{2} (F_{1} (1))F^{\prime}_{1} (1)T_{1} (1) + \alpha {\varvec{S}}_{2} (F_{1} (1))T^{\prime}_{1} (1) \\ N^{\prime\prime}(1) & = {\varvec{S}}_{2} (F_{1} (1))T_{1} (1)\left\{ {2\alpha - 4\overline{\alpha } E[{\rm X}] - \overline{\alpha } E[{\rm X}^{2} ]} \right\} + 2\left( {2\alpha - \overline{\alpha } E[{\rm X}]} \right)\left\{ {\varvec{S}^{\prime}_{2} (F_{1} (1))F^{\prime}_{1} (1)T_{1} (1) + {\varvec{S}}_{2} (F_{1} (1))T^{\prime}_{1} (1)} \right\} \\ & \quad + \alpha T_{1} (1)\left\{ {\varvec{S}^{\prime\prime}_{2} (F_{1} (1))\left( {F^{\prime}_{1} (1)} \right)^{2} + \varvec{S}^{\prime}_{2} (F_{1} (1))F^{\prime\prime}_{1} (1)} \right\} + 2\alpha \varvec{S}^{\prime}_{2} (F_{1} (1))F^{\prime}_{1} (1)T^{\prime}_{1} (1) + \alpha {\varvec{S}}_{2} (F_{1} (1))T^{\prime\prime}_{1} (1); \\ \end{aligned}$$
$$\pounds^{\prime\prime}_{2} (1) = \frac{{\overline{{\mathcalligra{p}_{2} }} \overline{\mathcalligra{q}} }}{{\left[ {F_{2} (1)} \right]^{3} }}\left[ \begin{aligned} & F_{2} (1)\left[ {F_{2} (1)\left\{ \begin{aligned} & 2\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F^{\prime}(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime\prime}(1) \\ & + \varvec{S}^{\prime\prime}_{3} (F_{2} (1))\left( {F^{\prime}_{2} (1)} \right)^{2} F(1) + \varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime\prime}_{2} (1)F(1) \\ \end{aligned} \right\} - {\varvec{S}}_{3} (F_{2} (1))F^{\prime\prime}_{2} (1)F(1)} \right] \\ & - 2F^{\prime}_{2} (1)\left[ {F_{2} (1)\left\{ {{\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1) + \varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)} \right\} - {\varvec{S}}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)} \right] \\ \end{aligned} \right];$$
$$\begin{aligned} \pounds^{\prime}_{3} (1) & = \pounds^{\prime}_{1} (1)\left\{ {\mathcalligra{q}\left( {\overline{\mathcalligra{w}} + \overline{{\mathcalligra{p}_{1} }} \mathcalligra{w}} \right) + \frac{{\overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right\} - \, \mathcalligra{p}_{1} \Theta \alpha E[{\rm X}] - \, F_{1} (1) - F^{\prime}_{1} (1) \\ & \quad + \pounds_{1} (1)\left[ \begin{aligned} & \mathcalligra{q}\left\{ {\overline{\mathcalligra{w}} \left( {1 - \overline{{\mathcalligra{p}_{1} }} {\text{a}}_{0} } \right)E[{\rm X}] + \left( {1 - {\text{a}}_{0} } \right)\overline{{\mathcalligra{p}_{1} }} \mathcalligra{w} + \overline{{\mathcalligra{p}_{1} }} \mathcalligra{w}E[{\rm X}]} \right\} + \frac{{\overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)\left( {1 - \overline{{\mathcalligra{p}_{2} }} {\text{a}}_{0} } \right)E[{\rm X}]}}{{F_{2} (1)}} \\ & + \, \frac{{\overline{\mathcalligra{q}} \left[ {F_{2} (1)\left\{ {{\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1) + \varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)} \right\} - {\varvec{S}}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)} \right]}}{{\left[ {F_{2} (1)} \right]^{2} }} \\ \end{aligned} \right]; \\ \end{aligned}$$
$$NR^{\prime}(1) = \alpha {\varvec{S}}_{1} (F_{1} (1))\left[ {\left( {1 - A(\overline{{\mathcalligra{p}_{0} }} )} \right)E[{\rm X}] - 1} \right];$$
$$\begin{aligned} NR^{\prime\prime}(1) & = 2\left\{ {\alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1) - \overline{\alpha } E[{\rm X}]{\varvec{S}}_{1} (F_{1} (1))} \right\}\left[ {\left( {1 - A(\overline{{\mathcalligra{p}_{0} }} )} \right)E[{\rm X}] - 1} \right] \\ & \quad + \, \alpha {\varvec{S}}_{1} (F_{1} (1))\left( {1 - A(\overline{{\mathcalligra{p}_{0} }} )} \right)E[{\rm X}^{2} ]; \\ \end{aligned}$$
$$\begin{aligned} \pounds^{\prime\prime}_{3} (1) \, & = \, \pounds^{\prime\prime}_{1} (1)\left\{ {\mathcalligra{q}\left( {\overline{\mathcalligra{w}} + \overline{{\mathcalligra{p}_{1} }} \mathcalligra{w}} \right) + \frac{{\overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right\} \\ & \quad + \, 2\pounds^{\prime}_{1} (1)\left[ \begin{gathered} \mathcalligra{q}\left\{ {\overline{\mathcalligra{w}} \left( {1 - \overline{{\mathcalligra{p}_{1} }} {\text{a}}_{0} } \right)E[{\rm X}] + \left( {1 - {\text{a}}_{0} } \right)\overline{{\mathcalligra{p}_{1} }} \mathcalligra{w} + \overline{{\mathcalligra{p}_{1} }} \mathcalligra{w}E[{\rm X}]} \right\} + \frac{{\overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)\left( {1 - \overline{{\mathcalligra{p}_{2} }} {\text{a}}_{0} } \right)E[{\rm X}]}}{{F_{2} (1)}} \hfill \\ + \, \frac{{\overline{\mathcalligra{q}} \left[ {F_{2} (1)\left\{ {{\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1) + \varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)} \right\} - {\varvec{S}}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)} \right]}}{{\left[ {F_{2} (1)} \right]^{2} }} \, \hfill \\ \end{gathered} \right] \\ & \quad - \, \mathcalligra{p}_{1} \Theta \alpha E[{\rm X}^{2} ] - \, 2F^{\prime}_{1} (1) - F^{\prime\prime}_{1} (1) \\ & \quad + \, \pounds_{1} (1)\left[ \begin{aligned} & \mathcalligra{q}\left\{ {\overline{\mathcalligra{w}} \left( {1 - \overline{{\mathcalligra{p}_{1} }} {\text{a}}_{0} } \right)E[{\rm X}^{2} ] + 2\left( {1 - {\text{a}}_{0} } \right)\overline{{\mathcalligra{p}_{1} }} \mathcalligra{w}E[{\rm X}] + \overline{{\mathcalligra{p}_{1} }} \mathcalligra{w}E[{\rm X}^{2} ]} \right\} \\ & + \frac{{2\overline{\mathcalligra{q}} \left( {1 - \overline{{\mathcalligra{p}_{2} }} {\text{a}}_{0} } \right)E[{\rm X}]\left[ {F_{2} (1)\left\{ {{\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1) + \varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)} \right\} - {\varvec{S}}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)} \right]}}{{\left[ {F_{2} (1)} \right]^{2} }} \\ \end{aligned} \right] \\ & \quad + \, \frac{{\overline{\mathcalligra{q}} \pounds_{1} (1)\left[ \begin{aligned} & F_{2} (1)\left[ \begin{aligned} & F_{2} (1)\left\{ \begin{aligned} & 2\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F^{\prime}(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime\prime}(1) \\ & + \varvec{S}^{\prime\prime}_{3} (F_{2} (1))\left( {F^{\prime}_{2} (1)} \right)^{2} F(1) + \varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime\prime}_{2} (1)F(1) \\ \end{aligned} \right\} \\ & - {\varvec{S}}_{3} (F_{2} (1))F^{\prime\prime}_{2} (1)F(1) \\ \end{aligned} \right] \\ & - 2F^{\prime}_{2} (1)\left[ {F_{2} (1)\left\{ {{\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1) + \varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)} \right\} - {\varvec{S}}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)} \right] \\ \end{aligned} \right]}}{{\left[ {F_{2} (1)} \right]^{3} }}; \\ \end{aligned}$$
$$\xi (1) = \mathcalligra{p}_{1} \Theta \alpha {\varvec{S}}_{2} (F_{1} (1));\quad \xi_{1} (1) = 1 - \mathcalligra{p}_{1} \Theta \alpha \left( {1 - {\varvec{S}}_{2} (F_{1} (1))} \right);$$
$$\xi^{\prime}_{1} (1) = \, 1 - \mathcalligra{p}_{1} \Theta \alpha + \mathcalligra{p}_{1} \overline{\alpha } \Theta E[{\rm X}] + \mathcalligra{p}_{1} \Theta \alpha \left( {E[{\rm X}]{\varvec{S}}_{2} (F_{1} (1)) \, + \varvec{S}^{\prime}_{2} (F_{1} (1))F^{\prime}_{1} (1)} \right);$$
$$\xi^{\prime}_{2} (1) = \mathcalligra{p}_{1} \Theta \left( {\alpha - E[{\rm X}]} \right);\quad \xi^{\prime\prime}_{2} (1) = - \mathcalligra{p}_{1} \Theta \left( {2\overline{\alpha } E[{\rm X}] + E[{\rm X}^{2} ]} \right);$$
$$\xi^{\prime}(1) = \, \xi_{1} (1)\xi^{\prime}_{2} (1) + \, \mathcalligra{p}_{1} \Theta \alpha \left[ {\left( {E[{\rm X}] + 1 - \mathcalligra{p}_{1} \Theta \alpha + \mathcalligra{p}_{1} \Theta E[{\rm X}]} \right){\varvec{S}}_{2} (F_{1} (1)) + \varvec{S}^{\prime}_{2} (F_{1} (1))F^{\prime}_{1} (1)} \right];$$
$$\begin{aligned} \xi^{\prime\prime}(1) & = \, 2\xi^{\prime}_{1} (1)\xi^{\prime}_{2} (1) + \, \xi^{\prime}_{1} (1)\xi^{\prime\prime}_{2} (1) \, \\ & + \, \mathcalligra{p}_{1} \Theta \alpha \left[ \begin{aligned} & \left\{ {E[X^{2} ]\left( {1 + \mathcalligra{p}_{1} \Theta } \right) + 2E[{\rm X}]\left( {1 - \mathcalligra{p}_{1} \left( {\alpha - \overline{\alpha } } \right)\Theta + \mathcalligra{p}_{1} \Theta E[{\rm X}]} \right)} \right\}{\varvec{S}}_{2} (F_{1} (1)) \, + \, \varvec{S}^{\prime}_{2} (F_{1} (1))F^{\prime\prime}_{1} (1) \\ & + \, 2\left( {E[{\rm X}] + 1 - \mathcalligra{p}_{1} \Theta \alpha + \mathcalligra{p}_{1} \Theta E[{\rm X}]} \right)\varvec{S}^{\prime}_{2} (F_{1} (1))F^{\prime}_{1} (1) \, + \varvec{S}^{\prime\prime}_{2} (F_{1} (1))\left( {F^{\prime}_{1} (1)} \right)^{2} \, \\ \end{aligned} \right]; \\ \end{aligned}$$
$$NR^{\prime}_{3} (1) = \xi^{\prime}(1) - \, \mathcalligra{p}_{1} \Theta \alpha \varvec{S}^{\prime}_{2} (F_{1} (1))F^{\prime}_{1} (1) - \, \mathcalligra{p}_{1} \Theta {\varvec{S}}_{2} (F_{1} (1))\left[ {\alpha - \overline{\alpha } E[{\rm X}] + \alpha \left\{ {\mathcalligra{p}_{1} \Theta E[{\rm X}] + F_{1} (1)} \right\}} \right];$$
$$\begin{aligned} NR^{\prime\prime}_{3} (1) & = \xi^{\prime\prime}(1) - \, \mathcalligra{p}_{1} \Theta \alpha \left[ {\varvec{S}^{\prime}_{2} (F_{1} (1))F^{\prime\prime}_{1} (1) + \varvec{S}^{\prime\prime}_{2} (F_{1} (1))\left( {F^{\prime}_{1} (1)} \right)^{2} } \right] \\ & \quad - \, 2\mathcalligra{p}_{1} \Theta \varvec{S}^{\prime}_{2} (F_{1} (1))F^{\prime}_{1} (1)\left[ {\alpha - \overline{\alpha } E[{\rm X}] + \alpha \left\{ {\mathcalligra{p}_{1} \Theta E[{\rm X}] + F_{1} (1)} \right\}} \right] \\ & \quad - \, \mathcalligra{p}_{1} \Theta {\varvec{S}}_{2} (F_{1} (1))\left[ \begin{aligned} & - 2\overline{\alpha } E[{\rm X}] - \overline{\alpha } E[{\rm X}^{2} ] + \alpha \left( {\mathcalligra{p}_{1} \Theta E[{\rm X}^{2} ] + 2F^{\prime}_{1} (1)} \right) \\ & + \, 2\left( {\mathcalligra{p}_{1} \Theta E[{\rm X}] + F_{1} (1)} \right)\left( {\alpha - \overline{\alpha } E[{\rm X}]} \right) \\ \end{aligned} \right]; \\ \end{aligned}$$
$$\begin{aligned} DR^{\prime}(1) & = \left\{ {\alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1) - \overline{\alpha } E[{\rm X}]{\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right)} \right\}\left[ {\pounds(1) + \pounds_{1} \left( 1 \right)\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))\frac{F(1)}{{F_{2} (1)}}} \right)} \right] \\ & \quad + \, \alpha {\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right)\left[ \begin{aligned} & \pounds^{\prime}(1) + \pounds(1)E[{\rm X}]\left( {1 - A(\overline{{\mathcalligra{p}_{0} }} )} \right) + \pounds^{\prime}_{1} \left( 1 \right)\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))\frac{F(1)}{{F_{2} (1)}}} \right) \\ & + \, \pounds_{1} \left( 1 \right)\left\{ \begin{aligned} & E[{\rm X}]\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))\frac{F(1)}{{F_{2} (1)}}} \right) + \overline{{\mathcalligra{p}_{1} }} {\text{a}}_{0} \mathcalligra{q}\mathcalligra{w}\left( {E[{\rm X}] - 1} \right) \\ & + \mathcalligra{p}_{2} \overline{\mathcalligra{q}} \left\{ {\frac{{F_{2} (1)\left( {\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1)} \right) - {\varvec{S}}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)}}{{\left( {F_{2} (1)} \right)^{2} }}} \right\} \\ \end{aligned} \right\} \\ \end{aligned} \right] \\ & \quad - \, \mathcalligra{p}_{1} \Theta \alpha \left[ {\alpha E[{\rm X}]{\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) + \alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1) - \overline{\alpha } E[{\rm X}]{\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right)} \right] - \alpha F^{\prime}_{1} (1){\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) \\ & \quad - \, F_{1} \left( 1 \right)\left[ {\alpha - E[{\rm X}] + \alpha E[{\rm X}]{\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) + \alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1)} \right]; \\ \end{aligned}$$
$$\begin{aligned} NR^{\prime\prime}_{2} (1) & = \left[ {2\alpha \left( {1 - E[{\rm X}]} \right) - {\text{a}}_{0} \alpha \left( {1 - 2E[{\rm X}]} \right) - \overline{\alpha } E[{\rm X}]\left( {1 - {\text{a}}_{0} } \right)} \right]DR^{\prime}(1) \\ & \quad + \left[ {\left( {1 - {\text{a}}_{0} } \right)\left( {\alpha - E[{\rm X}]} \right) - \alpha E[{\rm X}]\left( {A(\overline{{\mathcalligra{p}_{0} }} ) - {\text{a}}_{0} } \right)} \right]NR^{\prime}_{1} (1) \\ & \quad + \alpha {\varvec{S}}_{1} (F_{1} (1))\left\{ {\alpha \pounds^{\prime}_{3} (1) - \left( {1 - {\text{a}}_{0} } \right)\left( {\alpha - E[{\rm X}]} \right)\pounds(1)} \right\}\left[ {\left( {1 - A(\overline{{\mathcalligra{p}_{0} }} )} \right)E[{\rm X}] - 1} \right]; \\ \end{aligned}$$
$$\begin{aligned} NR^{\prime\prime\prime}_{2} (1) & = \left[ {2\left( {\alpha - \overline{\alpha } E[{\rm X}]} \right) - \left( {1 - {\text{a}}_{0} } \right)\left\{ {2E[{\rm X}]\left( {\overline{\alpha } + \alpha E[{\rm X}]} \right) + E[{\rm X}^{2} ]\left( {\overline{\alpha } + 2\alpha } \right)} \right\}} \right]DR^{\prime}(1) \\ & \quad + \left[ {2\alpha \left( {1 - E[{\rm X}]} \right) - {\text{a}}_{0} \alpha \left( {1 - 2E[{\rm X}]} \right) - \overline{\alpha } E[{\rm X}]\left( {1 - {\text{a}}_{0} } \right)} \right]DR^{\prime\prime}(1) \\ & \quad + \left[ \begin{aligned} & \left( {A(\overline{{\mathcalligra{p}_{0} }} ) - {\text{a}}_{0} } \right)\left\{ { - 2E[{\rm X}] - \left( {1 + \alpha } \right)E[{\rm X}^{2} ] + 2\alpha E[{\rm X}]\left( {1 - E[{\rm X}]} \right)} \right\} \\ & + \left( {1 - A(\overline{{\mathcalligra{p}_{0} }} )} \right)\left\{ {2E[{\rm X}]\left( {\alpha - E[{\rm X}]} \right) - E[{\rm X}^{2} ] + \overline{\alpha } E[{\rm X}]} \right\} \\ \end{aligned} \right]NR^{\prime}_{1} (1) \\ & \quad + \left[ {\left( {1 - {\text{a}}_{0} } \right)\left( {\alpha - E[{\rm X}]} \right) - \alpha E[{\rm X}]\left( {A(\overline{{\mathcalligra{p}_{0} }} ) - {\text{a}}_{0} } \right)} \right]NR^{\prime\prime}_{1} (1) \\ & \quad + \, \left[ {\alpha \pounds^{\prime\prime}_{3} (1) - 2\overline{\alpha } E[{\rm X}]\pounds^{\prime}_{3} (1) - \left( {1 - {\text{a}}_{0} } \right)\left\{ \begin{aligned} & \left( {\alpha - E[{\rm X}]} \right)\left( {3\pounds(1)E[{\rm X}] + 2\pounds^{\prime}(1)} \right) \\ & + \pounds(1)\left( {E[{\rm X}^{2} ] + 2\overline{\alpha } E[{\rm X}]} \right) \\ \end{aligned} \right\}} \right]NR^{\prime}(1) \\ & \quad + \, \left[ {\alpha \pounds^{\prime}_{3} (1) - \left( {1 - {\text{a}}_{0} } \right)\pounds(1)\left( {\alpha - E[{\rm X}]} \right)} \right]NR^{\prime\prime}(1); \\ \end{aligned}$$
$$\begin{aligned} NR^{\prime}_{1} (1) & = \mathcalligra{p}_{1} \Theta \alpha \left[ {\alpha E[{\rm X}]{\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) + \alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1) - \overline{\alpha } E[{\rm X}]{\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right)} \right] + \, \alpha F^{\prime}_{1} (1){\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) \\ & \quad + \, F_{1} \left( 1 \right)\left[ {\alpha - E[{\rm X}] + \alpha E[{\rm X}]{\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) + \alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1)} \right] \\ & \quad - \, \left\{ {\alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1) - \overline{\alpha } E[{\rm X}]{\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right)} \right\}\left[ {\pounds(1) + \pounds_{1} \left( 1 \right)\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))\frac{F(1)}{{F_{2} (1)}}} \right)} \right] \\ & \quad - \, \alpha {\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right)\left[ \begin{aligned} & \pounds^{\prime}(1) + \pounds(1) + \pounds^{\prime}_{1} \left( 1 \right)\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))\frac{F(1)}{{F_{2} (1)}}} \right) \\ & + \, \pounds_{1} \left( 1 \right)\left\{ \begin{aligned} & E[{\rm X}]\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))\frac{F(1)}{{F_{2} (1)}}} \right) + \overline{{\mathcalligra{p}_{1} }} {\text{a}}_{0} \mathcalligra{q}\mathcalligra{w}\left( {E[{\rm X}] - 1} \right) \\ & + \mathcalligra{p}_{2} \overline{\mathcalligra{q}} \left\{ {\frac{{F_{2} (1)\left( {\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1)} \right) - {\varvec{S}}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)}}{{\left( {F_{2} (1)} \right)^{2} }}} \right\} \\ \end{aligned} \right\} \\ \end{aligned} \right]; \\ \end{aligned}$$
$$\begin{aligned} DR^{\prime\prime}(1) & = \, \left\{ \begin{aligned} & \alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime\prime}_{1} (1) + \alpha \varvec{S}^{\prime\prime}_{1} (F_{1} (1))\left( {F^{\prime}_{1} (1)} \right)^{2} \\ & - \, 2\overline{\alpha } E[{\rm X}]\varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1) - \overline{\alpha } E[{\rm X}^{2} ]{\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) \\ \end{aligned} \right\}\left[ {\pounds(1) + \pounds_{1} \left( 1 \right)\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right)} \right] \\ & \quad + \, 2\left\{ \begin{aligned} & \alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1) \\ & - \, \overline{\alpha } E[{\rm X}]{\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) \\ \end{aligned} \right\}\left[ \begin{aligned} & \pounds^{\prime}(1) + \pounds(1)E[{\rm X}]\left( {1 - A(\overline{{\mathcalligra{p}_{0} }} )} \right) + \pounds_{1} ^{\prime}\left( 1 \right)\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right) \\ & + \, \pounds_{1} \left( 1 \right)\left\{ \begin{aligned} & E[{\rm X}]\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right) + \overline{{\mathcalligra{p}_{1} }} {\text{a}}_{0} \mathcalligra{q}\mathcalligra{w}\left( {E[{\rm X}] - 1} \right) \\ & + \mathcalligra{p}_{2} \overline{\mathcalligra{q}} \left\{ {\frac{{F_{2} (1)\left( {\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1)} \right) - {\varvec{S}}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)}}{{\left( {F_{2} (1)} \right)^{2} }}} \right\} \\ \end{aligned} \right\} \\ \end{aligned} \right] \\ \end{aligned}$$
$$\begin{aligned} & \quad + \, \alpha {\varvec{S}}_{3} (F_{2} (1))\left[ \begin{aligned} & \pounds^{\prime\prime}(1) + \pounds(1)E[{\rm X}^{2} ]\left( {1 - A(\overline{{\mathcalligra{p}_{0} }} )} \right) + \left\{ {\pounds^{\prime}_{1} \left( 1 \right) + \pounds^{\prime\prime}_{1} \left( 1 \right)} \right\}\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right) \\ & + \, 2\pounds^{\prime}_{1} \left( 1 \right)\left\{ \begin{aligned} & E[{\rm X}]\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right) + \overline{{\mathcalligra{p}_{1} }} {\text{a}}_{0} \mathcalligra{q}\mathcalligra{w}\left( {E[{\rm X}] - 1} \right) \\ & + \mathcalligra{p}_{2} \overline{\mathcalligra{q}} \left\{ {\frac{{F_{2} (1)\left( {\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1)} \right) - {\varvec{S}}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)}}{{\left( {F_{2} (1)} \right)^{2} }}} \right\} \\ \end{aligned} \right\} + 2\pounds^{\prime}(1)\left( {1 - A(\overline{{\mathcalligra{p}_{0} }} )} \right) \\ & + \, \pounds_{1} (1)\left\{ \begin{aligned} & E[{\rm X}^{2} ]\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right) + \overline{{\mathcalligra{p}_{1} }} {\text{a}}_{0} \mathcalligra{q}\mathcalligra{w}E[{\rm X}^{2} ] \\ & + \, 2E[{\rm X}]\mathcalligra{p}_{2} \overline{\mathcalligra{q}} \left\{ {\frac{{F_{2} (1)\left( {\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1)} \right) - {\varvec{S}}_{3} (F_{2} (1))F_{2} ^{\prime}(1)F(1)}}{{\left( {F_{2} (1)} \right)^{2} }}} \right\} \\ \end{aligned} \right\} \\ & + \, \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} \pounds_{1} (1)}}{{\left( {F_{2} (1)} \right)^{3} }}\left\{ \begin{aligned} & F_{2} (1)\left[ \begin{aligned} & F_{2} (1)\left\{ \begin{aligned} & 2\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F^{\prime}(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime\prime}(1) \\ & + \varvec{S}^{\prime\prime}_{3} (F_{2} (1))\left( {F^{\prime}_{2} (1)} \right)^{2} F(1) + \varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime\prime}_{2} (1)F(1) \\ \end{aligned} \right\} \\ & - {\varvec{S}}_{3} (F_{2} (1))F^{\prime\prime}_{2} (1)F(1) \\ \end{aligned} \right] \\ & - 2F^{\prime}_{2} (1)\left[ {F_{2} (1)\left( {\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1)} \right) - {\varvec{S}}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)} \right] \\ \end{aligned} \right\} \\ \end{aligned} \right] \\ & \quad - \, \mathcalligra{p}_{1} \Theta \alpha \left[ \begin{aligned} & \left( {\alpha - \overline{\alpha } } \right)E[{\rm X}^{2} ]{\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) + 2\left( {\alpha - \overline{\alpha } } \right)E[{\rm X}]\varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1) \\ & - 2\overline{\alpha } \left( {E[{\rm X}]} \right)^{2} {\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) + \alpha \varvec{S}^{\prime\prime}_{1} (F_{1} (1))\left( {F^{\prime}_{1} (1)} \right)^{2} + \alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime\prime}_{1} (1) \\ \end{aligned} \right] \, - \, \alpha F^{\prime\prime}_{1} (1){\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) \, \\ & \quad - \, 2F^{\prime}_{1} (1)\left[ {\alpha \left( {1 - E[{\rm X}]} \right) - E[{\rm X}]\left( {\overline{\alpha } - \alpha {\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right)} \right) + \alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1)} \right] \\ & \quad - \, F\left( 1 \right)\left[ \begin{aligned} & \alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime\prime}_{1} (1) + \alpha \varvec{S}^{\prime\prime}_{1} (F_{1} (1))\left( {F^{\prime}_{1} (1)} \right)^{2} - 2\overline{\alpha } E[{\rm X}] \\ & + 2\alpha E[{\rm X}]\varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1) - E[{\rm X}^{2} ]\left\{ {1 + \alpha {\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right)} \right\} \\ \end{aligned} \right]; \\ \end{aligned}$$
$$\begin{aligned} NR^{\prime\prime}_{1} (1) & = \, \mathcalligra{p}_{1} \Theta \alpha \left[ \begin{aligned} & \left( {\alpha - \overline{\alpha } } \right)E[{\rm X}^{2} ]{\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) + 2\left( {\alpha - \overline{\alpha } } \right)E[{\rm X}]\varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1) \\ & - 2\overline{\alpha } \left( {E[{\rm X}]} \right)^{2} {\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) + \alpha \varvec{S}^{\prime\prime}_{1} (F_{1} (1))\left( {F^{\prime}_{1} (1)} \right)^{2} + \alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime\prime}_{1} (1) \\ \end{aligned} \right] \\ & \quad + \, \alpha F^{\prime\prime}_{1} (1){\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) \, + \, 2F^{\prime}_{1} (1)\left[ {\alpha \left( {1 - E[{\rm X}]} \right) - E[{\rm X}]\left( {\overline{\alpha } - \alpha {\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right)} \right) + \alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1)} \right] \\ & \quad + \, F_{1} \left( 1 \right)\left[ \begin{aligned} & \alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime\prime}_{1} (1) + \alpha \varvec{S}^{\prime\prime}_{1} (F_{1} (1))\left( {F^{\prime}_{1} (1)} \right)^{2} - 2\overline{\alpha } E[{\rm X}] \\ & + 2\alpha E[{\rm X}]\varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1) - E[{\rm X}^{2} ]\left\{ {1 + \alpha {\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right)} \right\} \\ \end{aligned} \right] \\ & \quad - \, \left\{ \begin{aligned} & \alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime\prime}_{1} (1) + \alpha \varvec{S}^{\prime\prime}_{1} (F_{1} (1))\left( {F^{\prime}_{1} (1)} \right)^{2} \\ & - 2\overline{\alpha } E[{\rm X}]\varvec{S}^{\prime}_{1} (F_{1} (1))F^{\prime}_{1} (1) - \overline{\alpha } E[{\rm X}^{2} ]{\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) \\ \end{aligned} \right\}\left[ {\pounds(1) + \pounds_{1} \left( 1 \right)\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right)} \right] \\ \end{aligned}$$
$$\begin{aligned} & \quad - \, 2\left\{ \begin{gathered} \alpha \varvec{S}^{\prime}_{1} (F_{1} (1))F_{1} ^{\prime}(1) \hfill \\ - \overline{\alpha } E[{\rm X}]{\varvec{S}}_{1} \left( {F_{1} \left( 1 \right)} \right) \hfill \\ \end{gathered} \right\}\left[ \begin{aligned} & \pounds^{\prime}(1) + \pounds(1) + \pounds^{\prime}_{1} \left( 1 \right)\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right) \\ & + \, \pounds_{1} \left( 1 \right)\left\{ \begin{gathered} E[{\rm X}]\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right) + \overline{{\mathcalligra{p}_{1} }} {\text{a}}_{0} \mathcalligra{q}\mathcalligra{w}\left( {E[{\rm X}] - 1} \right) \hfill \\ + \mathcalligra{p}_{2} \overline{\mathcalligra{q}} \left\{ {\frac{{F_{2} (1)\left( {\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1)} \right) - {\varvec{S}}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)}}{{\left( {F_{2} (1)} \right)^{2} }}} \right\} \hfill \\ \end{gathered} \right\} \\ \end{aligned} \right] \\ & \quad - \, \alpha {\varvec{S}}_{3} (F_{2} (1))\left[ \begin{aligned} & 2\pounds^{\prime}(1) + \pounds^{\prime\prime}(1) + \pounds^{\prime}_{1} \left( 1 \right)\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right) + \pounds^{\prime\prime}_{1} \left( 1 \right)\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right) \\ & + \, 2\pounds_{1} ^{\prime}\left( 1 \right)\left\{ \begin{gathered} E[{\rm X}]\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right) + \overline{{\mathcalligra{p}_{1} }} {\text{a}}_{0} \mathcalligra{q}\mathcalligra{w}\left( {E[{\rm X}] - 1} \right) \hfill \\ + \mathcalligra{p}_{2} \overline{\mathcalligra{q}} \left\{ {\frac{{F_{2} (1)\left( {\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1)} \right) - {\varvec{S}}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)}}{{\left( {F_{2} (1)} \right)^{2} }}} \right\} \hfill \\ \end{gathered} \right\} \\ & + \, \pounds_{1} (1)\left\{ \begin{gathered} E[{\rm X}^{2} ]\left( {\mathcalligra{p}_{1} \overline{\mathcalligra{w}} \mathcalligra{q} + \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} {\varvec{S}}_{3} (F_{2} (1))F(1)}}{{F_{2} (1)}}} \right) + \overline{{\mathcalligra{p}_{1} }} {\text{a}}_{0} \mathcalligra{q}\mathcalligra{w}E[{\rm X}^{2} ] \hfill \\ + \, 2E[{\rm X}]\mathcalligra{p}_{2} \overline{\mathcalligra{q}} \left\{ {\frac{{F_{2} (1)\left( {\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1)} \right) - {\varvec{S}}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)}}{{\left( {F_{2} (1)} \right)^{2} }}} \right\} \hfill \\ \end{gathered} \right\} \\ & + \, \frac{{\mathcalligra{p}_{2} \overline{\mathcalligra{q}} \pounds_{1} (1)}}{{\left( {F_{2} (1)} \right)^{3} }}\left\{ \begin{gathered} F_{2} (1)\left[ \begin{aligned} & F_{2} (1)\left\{ \begin{aligned} & 2\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F^{\prime}(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime\prime}(1) \\ & + \varvec{S}^{\prime\prime}_{3} (F_{2} (1))\left( {F^{\prime}_{2} (1)} \right)^{2} F(1) + \varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime\prime}_{2} (1)F(1) \\ \end{aligned} \right\} \\ & - {\varvec{S}}_{3} (F_{2} (1))F^{\prime\prime}_{2} (1)F(1) \\ \end{aligned} \right] \hfill \\ - 2F^{\prime}_{2} (1)\left[ {F_{2} (1)\left( {\varvec{S}^{\prime}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1) + {\varvec{S}}_{3} (F_{2} (1))F^{\prime}(1)} \right) - {\varvec{S}}_{3} (F_{2} (1))F^{\prime}_{2} (1)F(1)} \right] \hfill \\ \end{gathered} \right\} \\ \end{aligned} \right]; \\ \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shree, V., Upadhyaya, S. & Kulshrestha, R. Cost scrutiny of discrete-time priority queue with cluster arrival and Bernoulli feedback. OPSEARCH (2024). https://doi.org/10.1007/s12597-024-00742-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12597-024-00742-8

Keywords

Navigation