Skip to main content
Log in

Fuzzy multi-objective deterministic inventory model with time dependent demand and holding cost under Pythagorean fuzzy goal programming approach

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

In this present study we have considered a deterministic inventory model in which we have taken deterioration as a function of time and demand function is considered initially linear for some time and next exponential. In the presence of uncertainty all the cost parameters are taken as generalized triangular fuzzy number. The proposed inventory model has been solved by fuzzy nonlinear programming approach and Pythagorean fuzzy goal programming approach. Finally we have taken numerical examples and sensitivity analysis for some cost parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Harris, F.W.: Economic order quantity model. Inst. Oper. Res. Manag. Sci. 38(6), 937–946 (1915)

    Google Scholar 

  2. Aggarwal, S.P., Jaggi, C.K.: Ordering policies of deteriorating items under permissible delay in payment. J. Oper. Res. Soc. 46, 658–662 (1995)

    Article  Google Scholar 

  3. Gupta, R., Vrat, P.: Inventory model for stock-dependent consumption rate. Opsearch 23, 19–24 (1986)

    MathSciNet  Google Scholar 

  4. Ghare, P.M., Schradar, G.P.: A model for an exponentially decaying inventory. J. Ind. Eng. 14, 238–243 (1963)

    Google Scholar 

  5. Giri, B.C., Goswami, S., Chaudhuri, K.S.: An EOQ model for deteriorating items with time varying demand and costs. J. Oper. Res. Soc. 47(11), 1398–1405 (1996)

    Article  Google Scholar 

  6. Giri, B.C., Chakrabarty, T., Chaudhuri, K.S.: An EOQ model for items with weibull distribution deterioration, shortages and trended demand. J. Oper. Res. Soc. 25, 649–657 (1998)

    Google Scholar 

  7. Wee, H.M., Law, S.H.: Economic production lot size for deteriorating items taking account of the time-value of money. Comput. Oper. Res. 26, 545–558 (1999)

    Article  Google Scholar 

  8. Sachan, R.S.: Inventory policy model for deteriorating items with time proportional demand. J. Oper. Res. Soc. 35, 1013–1019 (1984)

    Google Scholar 

  9. Wu, J.W., Lin, C., Tan, B., Lee, W.C.: An EOQ inventory model with time-varying demand and Weibull deterioration with shortages. Int. J. Syst. Sci. 31, 677–683 (2000)

    Article  Google Scholar 

  10. Dye, C.Y., Chang, H.J., Teng, J.T.: A deteriorating inventory model with time-varying demand and shortage-dependent partial backlogging. Eur. J. Oper. Res. 172, 417–429 (2006)

    Article  MathSciNet  Google Scholar 

  11. Mishra, V.K., Singh, L.S., Kumar, R.: An inventory model for deteriorating items with time-dependent demand and time-varying holding cost under partial backlogging. J. Ind. Eng. Int. 9, 4 (2013)

    Article  Google Scholar 

  12. Omar, B.M., Amos, A., Olalekan, D.: An inventory model for linearly time-dependent deteriorating rate and time-varying demand with shortages partially backlogged. J. Intell. Fuzzy Syst. 38(4), 4545–4557 (2020)

    Article  Google Scholar 

  13. Zadeh, L.A.: Fuzzy sets. Inf. Control. 8, 338–353 (1965)

    Article  Google Scholar 

  14. Roig, G., Ghoshray, S., Yen, K.K.: A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets Syst. 106, 167–177 (1999)

    Article  MathSciNet  Google Scholar 

  15. Angelov, P.P.: Optimization in an intuitinistic fuzzy enviornment. Fuzzy Sets Syst. 86, 299–306 (1997)

    Article  Google Scholar 

  16. Das, S.K., Islam, S.: Fuzzy multi Item inventory model with deterioration and demand dependent production cost under space constraint using neutrosophic hesitant fuzzy programming approach. Infin. Study 28, 281–294 (2019)

    Google Scholar 

  17. Yager, R.R.: Pythagorean fuzzy subsets. In: Proceedings of the joint IFSA world congress NAFIPS annual meeting, pp 57–61 (2013)

  18. Islam, S., Das, K.: Multi-objective inventory model with deterioration under space constraint: neutrosophic hesitant fuzzy programming approach. Neutrosophic Sets Syst. 47, 124–146 (2021)

    Google Scholar 

  19. Garg, H.: A linear programming method based on an improved score function for interval-valued pythagorean fuzzy numbers and its application to decision-making. Internat. J. Uncertain. Fuzziness Knowl. Based Syst. 26(01), 67–80 (2018)

    Article  MathSciNet  Google Scholar 

  20. Ejegwa, P.A.: Pythagorean fuzzy set and its application in career placements based on academic performance using max–min–max composition. Complex & Intelligent Systems 5, 165–175 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Let us convey our humble gratitude to the department of mathematics, University of Kalyani for their cordial and helpful cooperation by providing us with financial support through DSE-PURSE (Phase-II).

Funding

No funding to be reported.

Author information

Authors and Affiliations

Authors

Contributions

Both of the authors equally contributed equally to the above work. Both of them read and approved the final version of the manuscript.

Corresponding author

Correspondence to Kausik Das.

Ethics declarations

Conflict of interest

Both of the authors declare that they don’t have any competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The governing differential equations are given bellow.

$$\frac{{dQ_{1i} }}{dt} = - D_{i} = - a_{i} t,\quad 0 \le t \le t_{1i}$$
(23)
$$\frac{{dQ_{2i} }}{dt} = - D_{i} \left( t \right) - w_{i} .Q_{2i} \left( t \right) = - a_{i} e^{{\alpha_{i} t}} - \alpha_{i} t.Q_{2i} \left( t \right),\quad t_{1i} \le t \le t_{2i}$$
(24)
$$\frac{{dQ_{3i} }}{dt} = - {\text{b}}_{{\text{i}}} ,\quad t_{2i} \le t \le t_{3i}$$
(25)

We have the boundary condition \(Q_{2i} \left( {t_{2i} } \right) = 0, Q_{1i} \left( 0 \right) = Q_{max}\) and a condition where \(Q_{1i} \left( {t_{1i} } \right) = Q_{2i} \left( {t_{1i} } \right)\).

From (23)

$$dQ_{1i} = - a_{i} t ;with Q_{1i} \left( 0 \right) = Q_{max}$$
(26)

Integrating both sides of (4) we get

$$\begin{aligned} \smallint dQ_{1i} & = \smallint - a_{i} tdt \\ Q_{1i} \left( t \right) & = - \frac{{a_{i} t^{2} }}{2} + C_{1} \left( { integrating\;constant} \right) \\ \end{aligned}$$
(27)

Using the condition \(Q_{1i} \left( 0 \right) = Q_{max}\) we get from (27)

$$Q_{1i} \left( t \right) = Q_{max} - \frac{{a_{i} t^{2} }}{2}$$
(28)

Now from (24) we have

$$\frac{{dQ_{2i} }}{dt} + \alpha_{i} t.Q_{2i} \left( t \right) = - a_{i} e^{{a_{i} t}}$$

This is a linear equation with integrating factor (I.F)\(= e^{{\smallint \alpha_{i} .t.dt}} = e^{{\frac{{a_{i} t^{2} }}{2}}}\).

Therefore,

$$\begin{aligned} Q_{2i} \left( t \right) \cdot e^{{\frac{{a_{i} t^{2} }}{2}}} & = - a_{i} \smallint e^{{a_{i} t}} \cdot e^{{\frac{{a_{i} t^{2} }}{2}}} dt \\ & = - a_{i} \smallint e^{{a_{i} t + \frac{{a_{i} t^{2} }}{2}}} dt \\ & = - a_{i} \left[ {1 + a_{i} t + \frac{{a_{i} t^{2} }}{2} + \left( {a_{i} t + \frac{{a_{i} t^{2} }}{2}} \right)^{2} + \ldots } \right] + C_{2} \left( {{\text{integrating}}\;{\text{constant}}} \right) \\ \end{aligned}$$
(29)

Now using the condition \(Q_{2i} \left( {t_{2i} } \right) = 0 in \left( {7^{\prime}} \right)and finding the value of C_{2}\) we get,

$$Q_{2i} \left( t \right) = a_{i} e^{{ - \frac{{\alpha_{i} t^{2} }}{2}}} \left\{ {\left( {t_{2i} - t} \right) + \frac{{a_{i} }}{2}\left( {t_{2i}^{2} - t^{2} } \right) + \frac{1}{3}\left( {\frac{{\alpha_{i} }}{{a_{i} }} + a_{i}^{2} } \right)\left( {t_{2i}^{3} - t^{3} } \right) + \frac{{a_{i} \alpha_{i} }}{4}\left( {t_{2i}^{4} - t^{4} } \right)} \right\}$$
(30)

From the Eq. (25) we have

$$\begin{aligned} \frac{{dQ_{3i} }}{dt} & = - {\text{b}}_{{\text{i}}} \\ dQ_{3i} & = - {\text{b}}_{{\text{i}}} \cdot dt\quad for\quad t_{2i} \le t \le t_{3i} \\ \end{aligned}$$
(31)

Integrating (31) we get,

$$Q_{3i} = - b_{i} t + C_{3} \left( { Integrating constant} \right)$$
(32)

Using the condition \(Q_{3i} \left( {t_{2i} } \right) = 0\) we get from (31)

$$Q_{3i} = b_{i} \left( {t_{2i} - t_{3i} } \right)$$
(33)

Equation (28) represents the inventory during the time interval \(0 \le t \le t_{1i} .\)

Equation (30) represents the inventory during the time interval \(t_{1i} \le t \le t_{2i}\).

Equation (33) represents the negative inventory during the time interval \(t_{2i} \le t \le t_{3i}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K., Islam, S. Fuzzy multi-objective deterministic inventory model with time dependent demand and holding cost under Pythagorean fuzzy goal programming approach. OPSEARCH (2024). https://doi.org/10.1007/s12597-023-00727-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12597-023-00727-z

Keywords

Navigation