Skip to main content
Log in

A time variant multi-objective particle swarm optimization algorithm for solving fuzzy number linear programming problems using modified Kerre’s method

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

Recently, Ghanbari et al. (IEEE Transactions on Fuzzy Systems 27:1286–1294, 2019) have proposed modified Kerre’s method for comparison of LR fuzzy numbers. Here, we make use of the modified Kerre’s method to solve fuzzy linear programming problems with LR coefficients. In an approach to solve a fuzzy linear program with fuzzy LR coefficients, a bi-objective optimization problem is formulated. For the associated bi-objective optimization problem, we present a time variant multi-objective particle swarm optimization (TV-MOPSO) algorithm to compute the Pareto front, a set containing a large number of solutions. Contrary to methods that change the fuzzy optimization problem to a crisp problem by use of a ranking function, using modified Kerre’s method, the fuzzy optimization problem is solved directly, with no need for changing it to a crisp program. A comparative investigation using illustrative examples with triangular fuzzy coefficients show the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Azadeh, A., Raoofi, Z., Zarrin, M.: A multi-objective fuzzy linear programming model for optimization of natural gas supply chain through a greenhouse gas reduction approach. J. Nat. Gas Sci. Eng. 2, 702–710 (2015)

    Google Scholar 

  2. Bector, C.R., Chandra, S., Vijiay, V.: Duality in linear programming with fuzzy parameters and matrix games with fuzzy pay-offs. Fuzzy Sets Syst. 146, 253–269 (2004)

    Google Scholar 

  3. Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manage. Sci. 17, 141–164 (1970)

    Google Scholar 

  4. Bhaumika, A., Kumar Roya, S., Li, D.F.: Analysis of triangular intuitionistic fuzzy matrix games using robust ranking. J. Intell. Fuzzy Syst. 33, 327–336 (2017)

    Google Scholar 

  5. Bortolon, G., Degani, R.: A reviw of some methods for ranking fuzzy subsets. Fuzzy Sets Syst. 15, 1–19 (1985)

    Google Scholar 

  6. Bukley, J.J., Eslami, E., Feuring, T.: Fuzzy Math. Econ. Eng. Physica-Velag, Heidelberg (2002)

    Google Scholar 

  7. Buckley, J.J., Feuring, T., Hayashi, Y.: Neural net solutions to fuzzy linear programming. Fuzzy Sets Syst. 106, 99–111 (1999)

    Google Scholar 

  8. Buckely, J.J., Jowers, L.J.: Monte Carlo Method in Fuzzy Optimization. Studies in Fuzziness and Soft Computing (2007)

  9. Buckley, J.J., Feuring, T.: Evolutionary algorithm solution to fuzzy problems: fuzzy linear programming. Fuzzy Sets Syst. 109, 35–53 (2000)

    Google Scholar 

  10. Caramia, M., Dell’Olmo, P.: Multi-objective Management in Freight Logistics. Springer, Berlin (2008)

    Google Scholar 

  11. Chakraborty, A., Chakraborty, M.: Cost-time minimization in a transportation problem with fuzzy parameters: a case study. J. Transp. Syst. Eng. Inform. Technol. 10, 53–63 (2010)

    Google Scholar 

  12. Cornelis, C., Dekesel, P., Kerre, E.E.: Shortest paths in fuzzy weighted graphs. Int. J. Intell. Syst. 19, 1051–1068 (2004)

    Google Scholar 

  13. Coello, C.A.C., Veldhuizen, D.A.V., Lamount, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  14. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evolut. Comput. 8, 256–279 (2004)

    Google Scholar 

  15. Das, S., Abraham, A., Chakraborty, U., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evolut. Comput. 13, 526–553 (2009)

    Google Scholar 

  16. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001)

    Google Scholar 

  17. Dubios, D., Kerre, E.E., Mesiar, R., Prade, H.: Fuzzy Interval Analysis. Dordreccht, Netherlands (2000)

    Google Scholar 

  18. Dubois, D., Prade, H.: Fuzzy Sets and Systems, Theory and Applications. Academic Press, New York (1980)

    Google Scholar 

  19. Ebrahimnejad, A.: A new method for solving fuzzy transportation problem with LR flat fuzzy number. Int. J. Intell. Syst. 357, 108–124 (2016)

    Google Scholar 

  20. Ebrahimnejad, A.: Fuzzy linear programming approach for solving transportation problems with interval-valued trapezoidal fuzzy numbers. Indian Acad. Sci. 41, 299–316 (2016)

    Google Scholar 

  21. Ebrahimnejad, A.: A simplified new approach for solving fuzzy transportation problems with generalized trapezoidal fuzzy numbers. Appl. Soft Comput. 19, 171–176 (2014)

    Google Scholar 

  22. Ebrahimnejad, A., Tavana, M.: A novel method for solving linear programming problems with symmetric trapezoidal fuzzy number. Appl. Math. Model. 38, 4388–4395 (2014)

    Google Scholar 

  23. Ebrahimnejad, A., Nasseri, S.H., Mansouzadeh, S.M.: Bounded primal simplex algorithm for bounded linear programming with fuzzy cost coefficients. Int. J. Oper. Res. inf. Syst. 2, 96–120 (2011)

    Google Scholar 

  24. Ebrahimnejad, A., Nasseri, S.H.: A dual simplex method for bounded linear programs with fuzzy numbers. Int. J. Math. Oper. Res. 2, 762–779 (2010)

    Google Scholar 

  25. Ebrahimnejad, A.: Sensitivity analysis in fuzzy number linear programming problems. Math. Comput. Model. 53, 1878–1888 (2011)

    Google Scholar 

  26. Engelbrecht, A.P.: Computational Intelligence. Wiley, Hoboken (2007)

    Google Scholar 

  27. Ebrahimnejad, A., Nasseri, S.H.: Using complementary slackness property to solve linear programming with fuzzy parameters. Fuzzy Inf. Eng. 3, 233–245 (2009)

    Google Scholar 

  28. Ebrahimnejad, A., Tavana, M.: A novel methodfor solving linear programming problems with symmetric trapezoidal fuzzy numbers. Appl. Math. Model. 38, 4388–4395 (2014)

    Google Scholar 

  29. Farhadiana, B.: Sensitivity analysis in interval-valued trapezoidal fuzzy number linear programming problems. Appl. Math. Model. 38, 50–62 (2014)

    Google Scholar 

  30. Fieldsend, J.E., Singh, S.: A multi-objective algorithm based upon particle swarm optimization, an efficient data structure and turbulence, Proceedings of UK Workshop on Computational Intelligence (UKCI’02), 237–244 (2002)

  31. Ganesan, K., Veeramani, P.: Fuzzy linear programming with trapezoidal fuzzy numbers. Ann. Oper. Res. 143, 305–315 (2006)

    Google Scholar 

  32. Ghanbari, R., Ghorbani-Moghadam, Kh, Mahdavi-Amiri, N., De Baets, B.: Fuzzy linear programming problems: models and solutions. Soft Comput. 24, 10043–10073 (2020)

    Google Scholar 

  33. Ghanbari, R., Ghorbani-Moghadam, Kh, Mahdavi-Amiri, N.: A variable neighborhood search algorithm for solving fuzzy number linear programming problems using modified Kerre’s method. IEEE Trans. Fuzzy Syst. 27, 1286–1294 (2019)

    Google Scholar 

  34. Gonzales, A.M., Vila, M.A.: Dominace relation on fuzzy numbers. Inf. Sci. 64, 1–16 (1992)

    Google Scholar 

  35. Kaur, J., Kumar, A.: A new method to find the unique fuzzy optimal value of fuzzy linear programming problems. J. Optim. Theory Appl. 156, 529–534 (2013)

    Google Scholar 

  36. Kennedy, J., Eberhart, R.: Particle swarm optimization. IEEE International Conference Neural Networks IV 1942–1948 (1995)

  37. Kerre, E.E.: The use fuzzy theory in electrocardiological diagostics. In: Gupa Sanchez, M. (eds.) Approximate Reasoning in decision Analysis, pp. 277-282 (1982)

  38. Kumar, A., Kaur, J., Singh, P.: A new method for solving fully fuzzy linear programming problems. Appl. Math. Modell. 35, 817–823 (2011)

    Google Scholar 

  39. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Application. Prentice Hall, Upper Saddle River (1995)

    Google Scholar 

  40. Luhandjula, M.K., Rangoga, M.J.: An approach for solving a fuzzy multiobjective programming problem. Eur. J. Oper. Res. 232, 249–255 (2014)

    Google Scholar 

  41. Lin, F.T.: A Genetic algorithm for linear programming with fuzzy constraints. J. Inf. Sci. Eng. 24, 801–817 (2008)

    Google Scholar 

  42. Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance. Phys. A 391, 2193–2196 (2012)

    Google Scholar 

  43. Mahdavi, I., Mahdi-Paydar, M.M., Solimanpur, M.: Solving a new mathematical model for cellular manufacturing system: a fuzzy goal programming approach. Iranian J. Oper. Res. 2, 35–47 (2011)

    Google Scholar 

  44. Maleki, H.R., Tata, M., Mashinchi, M.: Linear programming with fuzzy variables. Fuzzy Sets Syst. 1, 68–84 (2000)

    Google Scholar 

  45. Mahdavi-Amiri, N., Nasseri, S.H., Yazdani, A.: Fuzzy primal simplex algorithm for solving fuzzy linear programming problems. Iranian J. Oper. Res. 1, 68–84 (2009)

    Google Scholar 

  46. Mahdavi-Amiri, N., Nasseri, S.H.: Duality in fuzzy number linear programming by use of certain linear ranking function. Appl. Math. Comput. 180, 206–216 (2006)

    Google Scholar 

  47. Mahdavi-Amiri, N., Nasseri, S.H.: Duality results and a dual simplex method for linear programming problems with trapezoidal fuzzy variables. Fuzzy Sets Syst. 158, 1961–1978 (2007)

    Google Scholar 

  48. Nasseri, S.H., Ebrahimnejad, A.: A fuzzy dual simplex method for fuzzy number linear programming problem. Adv. Fuzzy Sets Syst. 5, 81–95 (2010)

    Google Scholar 

  49. Nasseri, S.H., Ebrahimnejad, A.: Revised simplex method and its application for solving fuzzy linear programming problems. Eur. J. Ind. Eng. 6, 259–280 (2012)

    Google Scholar 

  50. Nasseri, S.H., Attari, H., Ebrahimnejad, A.: Revised simplex method and its application for solving fuzzy linear programming problems. Eur. J. Ind. Eng. 6, 259–280 (2012)

    Google Scholar 

  51. Negoitaa, C.V.: Fuzziness in Management, OPSA/TIMS, Miami (1976)

  52. Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman & Hall, London (2000)

    Google Scholar 

  53. Ren, A., Wang, Y.: An approach for solving a fuzzy bilevel programming problem through nearest interval approximation approach and KKT optimality conditions. Soft Comput. 8, 1–12 (2016)

    Google Scholar 

  54. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evolut. Comput. 8, 240–255 (2004)

    Google Scholar 

  55. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. IEEE Int. Congress Evolut. Comput. 3, 101–106 (1999)

    Google Scholar 

  56. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: IEEE Conference on Evolutionary Computation, 69–73 (1998)

  57. Tripathi, P.K., Bandyopadhyay, S., Pal, S.K.: Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf. Sci. 177, 5033–5049 (2007)

    Google Scholar 

  58. Tanaka, H., Okuda, T., Asai, K.: On fuzzy mathematical programming. J. Cybern. 3, 37–46 (1973)

    Google Scholar 

  59. Vijay, V., Mehra, A., Chandra, S., Bector, C.R.: Fuzzy matrix games via a fuzzy relation approach. Fuzzy Optim. Decis. Making 6, 299–314 (2007)

    Google Scholar 

  60. van den Bergh, F.: An Analysis of Particle Swarm Optimizers, Ph.D. Thesis, Faculty of Natural and Agricultural Science, University of Pretoria, Pretoria (2001)

  61. Verdegay, J.L.: A dual approach to solve the fuzzy linear programming problem. Fuzzy Sets Syst. 14, 131–141 (1984)

    Google Scholar 

  62. Wan, S.P., Dong, J.Y.: Possibility linear programming with trapezoidal fuzzy numbers. Appl. Math. Modell. 38, 1660–1672 (2013)

    Google Scholar 

  63. Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quantities(II). Fuzzy Sets Syst. 118, 387–405 (2001)

    Google Scholar 

  64. Wang, X., Kerre, E.E.: Reasonable properties for the ordering of fuzzy quantities(I). Fuzzy Sets Syst. 118, 375–385 (2001)

    Google Scholar 

  65. Zimmermann, H.J.: Fuzzy mathematical programming. Comput. Oper. Res. 10, 291–298 (1983)

    Google Scholar 

  66. Zimmermann, H.J.: Fuzzy Set Theory and its Applications, 4th edn. Springer, Berlin (2001)

    Google Scholar 

Download references

Acknowledgements

The first and second authors thank the Research Council of Ferdowsi University of Mashhad and optimization laboratory of Ferdowsi University of Mashhad and the third author thanks the Research Council of Sharif University of Technology for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nezam Mahdavi-Amiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we show details of the generated test problems and the obtained Pareto fronts (we generated random test problems in Matlab 2015). For all the examples, triangular fuzzy random coefficients were generated uniformly in the interval [1, 100] for the fuzzy linear program posed as (P) in (4) with a given seed value. To generate the fuzzy random coefficients, first we generated three numbers in the interval [1, 100] and then these numbers were sorted in increasing order and used as the tripe for the fuzzy number. All the solutions were obtained by applying Algorithm 1. Fuzzy linear programming problem (P) is solved by methods of Mahavi-Amiri and Nasseri [46], Ganesan and Veeramani [31] and Ebrahimnejad and Nasseri [27] and the results are given in the Tables 1357911131517 and 19. In Tables 24681012141618 and 20, the first column is the first objective function value of (BOOP) at a point of the Pareto front, the second column shows the second objective function value of (BOOP), the third column shows the comparison of the objective function values corresponding to the point in the Pareto front (ansP) and the one due to Mahavi-Amiri and Nasseri’s method (ansMN) using Theorem 2, the fourth column shows the comparison of the objective function values corresponding to the point in the Pareto front (ansP) and the one due to the Ganesan and Veeramani’s method (ansGV) using Theorem 2 and the fifth column shows the comparison of the objective function values corresponding to the point in the Pareto front (ansP) and the one due to the Ebrahimnejad and Naserri’s method (ansEN) using Theorem 2.

The objective function values for the examples 110 are less than the ones due to the answers obtained by Mahavi-Amiri and Nasseri [46], Ganesan and Veeramani [31] and Ebrahimnejad and Nasseri [27], as shown by the Tables 120.

Example 1

In Table 2, the results are shown corresponding to a problem with dimension \(2 \times 3\) (2 constraints and 3 variables) and the seed value of 156.

Table 1 The objective function values and penalty of different methods for the test problem 1
Table 2 The Pareto front of test problem 1 obtained by TV-MOPSO

Example 2

In Table 4, the results are shown corresponding to a problem with dimension \(3 \times 4\) (3 constraints and 4 variables) and the seed value of 100.

Table 3 The objective function values and penalty of different methods for the test problem 2
Table 4 The Pareto front of test problem 2 obtained by TV-MOPSO

Example 3

In Table 6, the results are shown corresponding to a problem with dimension \(5 \times 10\) (5 constraints and 10 variables) and the seed value of 460.

Table 5 The objective function values and penalty of different methods for the test problem 3
Table 6 The Pareto front of test ptoblem 3 obtained by TV-MOPSO

Example 4

In Table 8, the results are shown corresponding to a problem with dimension \(10 \times 15\) (10 constraints and 15 variables) and the seed value of 700.

Table 7 The objective function values and penalty of different methods for the test problem 4
Table 8 The Pareto front of test problem 4 obtained by TV-MOPSO

Example 5

In Table 10, the results are shown corresponding to a problem with dimension \(10 \times 20\) (10 constraints and 20 variables) and the seed value of 256.

Table 9 The objective function values and penalty of different methods for the test problem 5
Table 10 The Pareto front of test problem 5 obtained by TV-MOPSO

Example 6

In Table 12, the results are shown corresponding to a problem with dimension \(25 \times 50\) (25 constraints and 50 variables) and the seed value of 500.

Table 11 The objective function values and penalty of different methods for the test problem 6
Table 12 The Pareto front of test problem 6 obtained by TV-MOPSO

Example 7

In Table 14, the results are shown corresponding to a problem with dimension \(50 \times 100\) (50 constraints and 100 variables) and the seed value of 47.

Table 13 The objective function values and penalty of different methods for the test problem 7
Table 14 The Pareto front of test problem 7 obtained by TV-MOPSO

Example 8

In Table 16, the results are shown corresponding to a problem with dimension \(100 \times 200\) (100 constraints and 200 variables) and the seed value of 520.

Table 15 The objective function values and penalty of different methods for the test problem 8
Table 16 The Pareto front of test problem 8 obtained by TV-MOPSO

Example 9

In Table 20, the results are shown corresponding to a problem with dimension \(200 \times 300\) (200 constraints and 300 variables) and the seed value of 520.

Table 17 The objective function values and penalty of different methods for the test problem 9
Table 18 The Pareto front of test problem 9 obtained by TV-MOPSO

Example 10

In Table 20, the results are shown corresponding to a problem with dimension \(300 \times 400\) (300 constraints and 400 variables) and the seed value of 420.

Table 19 The objective function values and penalty of different methods for the test problem 10
Table 20 The Pareto front of test problem 10 obtained by TV-MOPSO

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, R., Ghorbani-Moghadam, K. & Mahdavi-Amiri, N. A time variant multi-objective particle swarm optimization algorithm for solving fuzzy number linear programming problems using modified Kerre’s method. OPSEARCH 58, 403–424 (2021). https://doi.org/10.1007/s12597-020-00482-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-020-00482-5

Keywords

Navigation